- Общая биомасса и продукция населения океана
- Общая биомасса и продукция населения океана
- Биомасса мирового океана
- Биомасса Мирового океана и ее состав, химические функции живого вещества
- Состав
- Химические функции живого вещества
- Окислительно-восстановительная
- Газовая функция
- Концентрационная
- Биохимическая функция
- Сравнительная оценка биомассы.
Общая биомасса и продукция населения океана
Общая биомасса и продукция населения океана
Известно, что высокопродуктивные районы занимают в Мировом океане лишь 20% его акватории, так как здесь, в отличие от суши, гораздо больше ограничивающих факторов и соответственно больше акватория малопродуктивных зон. Так фитобентос занимает лишь 1% общей площади дна океана, зообентос — 6-8%, а площадь основных рыбопромысловых районов занимает лишь около 2% всей акватории Мирового океана.
Весьма характерно, что существуют серьезные различия в ходе процесса биопродуцирования в океане и на суше. Дело в том, что на суше биомасса растений более чем в 1000 раз превышает биомассу животных, а в океане, наоборот, зоомасса в 19 раз превышает фитомассу. Дело в том, что морская вода, являясь прекрасным растворителем, создает благоприятные условия для воспроизводства фитопланктона, который за год дает несколько сот генераций.
Общая биомасса населения пелагиали Мирового океана (без микрофлоры — бактерий и простейших) оценивается величиной в 35-38 млрд. т, из них 30-35% составляют продуценты (водоросли) и 65-70% — консументы различных уровней. Общая годовая биологическая продукция в Мировом океане оценивается более чем 1300 млрд. т, в том числе более 1200 млрд. т дают водоросли и 70-80 млрд. т — животные.
Одним из важнейших показателей интенсивности процесса биологического продуцирования является отношение годовой продукции к среднегодовой биомассе (так называемый Р/В-коэффициент). Этот коэффициент наиболее высок у фитопланктона (от 100 до 200), у зоопланктона он в среднем составляет 10-15,у нектона — 0,7,у бентоса — 0,5.В целом он понижается от нижних звеньев трофической цепи к высшим.
В табл. 1 приведены средние оценки биомассы, годовой продукции и значения Р/В-коэффициента для основных групп населения Мирового океана.
Таблица 1. Некоторые характеристики основных групп населения Мирового океана
Группа населения / Биомасса, млрд. т / Продукция, млрд. т / Р/В-коэф
1. Продуценты (всего) / 11,5-13,8 / 1240-1250 / 90-110
В том числе: фитопланктон / 10-12 / более 1200 / 100-200
фитобентос / 1,5-1,8 / 0,7-0,9 /0,5
микрофлора (бактерии и простейшие) — / 40-50 / —
Консументы (всего) / 21-24 / 70-80 / 3-5
Зоопланктон / 5-6 /60-70 /10-15
Зообентос / 10-12 / 5-6 / 0,5
Нектон / 6 / 4 / 0,7
В том числе: криль / 2,2 / 0,9 / 0,4
кальмары / 0,28 / 0,8-0,9 / 2,5-3,0
мезопелагические рыбы / 1,0 / 1,2 / 1,2
прочие рыбы / 1,5 / 0,6 / 0,4
Всего / 32-38 / 1310-1330 / 34-42
Источник
Биомасса мирового океана
Урок 2. Биомасса биосферы
Анализ зачетной работы и выставление оценок (5-7 мин).
Устное повторение и компьютерное тестирование (13 мин).
Биомасса суши
Биомасса биосферы составляет примерно 0,01% от массы косного вещества биосферы, причем около 99% процентов биомассы приходится на долю растений, на долю консументов и редуцентов — около 1%. На континентах преобладают растения (99,2%), в океане — животные (93,7%)
Биомасса суши гораздо больше биомассы мирового океана, она составляет почти 99,9%. Это объясняется большей продолжительностью жизни и массой продуцентов на поверхности Земли. У наземных растений использование солнечной энергии для фотосинтеза достигает 0,1%, а в океане — только 0,04%.
Биомасса различных участков поверхности Земли зависит от климатических условий — температуры, количества выпадаемых осадков. Суровые климатические условия тундры — низкие температуры, вечная мерзлота, короткое холодное лето сформировали своеобразные растительные сообщества с небольшой биомассой. Растительность тундры представлена лишайниками, мхами, стелющимися карликовыми формами деревьев, травянистой растительностью, выдерживающей такие экстремальные условия. Биомасса тайги, затем смешанных и широколиственных лесов постепенно увеличивается. Зона степей сменяется субтропической и тропической растительностью, где условия для жизни наиболее благоприятны, биомасса максимальна.
В верхнем слое почвы наиболее благоприятный водный, температурный, газовый режим для жизнедеятельности. Растительный покров обеспечивает органическим веществом всех обитателей почвы — животных (позвоночных и беспозвоночных), грибы и огромное количество бактерий. Бактерии и грибы — редуценты, они играют значительную роль в круговороте веществ биосферы, минерализуя органические вещества. «Великие могильщики природы» — так назвал бактерии Л.Пастер.
Биомасса мирового океана
Гидросфера «водная оболочка» образована Мировым океаном, который занимает около 71% поверхности земного шара, и водоемами суши — реками, озерами — около 5%. Много воды находится в подземных водах и ледниках. В связи с высокой плотностью воды, живые организмы могут нормально существовать не только на дне, но и в толще воды, и на ее поверхности. Поэтому гидросфера заселена по всей толщине, живые организмы представлены бентосом, планктоном и нектоном.
Бентосные организмы (от греч. benthos — глубина) ведут придонный образ жизни, живут на грунте и в грунте. Фитобентос образован различными растениями — зелеными, бурыми, красными водорослями, которые произрастают на различных глубинах: на небольшой глубине зеленые, затем бурые, глубже — красные водоросли которые встречаются на глубине до 200 м. Зообентос представлен животными — моллюсками, червями, членистоногими и др. Многие приспособились к жизни даже на глубине более 11 км.
Планктонные организмы (от греч. planktos — блуждающий) — обитатели толщи воды, они не способны самостоятельно передвигаться на большие расстояния, представлены фитопланктоном и зоопланктоном. К фитопланктону относятся одноклеточные водоросли, цианобактерии, которые находятся в морских водоемах до глубины 100 м и являются основным продуцентом органических веществ — у них необычайно высокая скорость размножения. Зоопланктон — это морские простейшие, кишечнополостные, мелкие ракообразные. Для этих организмов характерны вертикальные суточные миграции, они являются основной пищевой базой для крупных животных — рыб, усатых китов.
Нектонные организмы (от греч. nektos — плавающий) — обитатели водной среды, способные активно передвигаться в толще воды, преодолевая большие расстояния. Это рыбы, кальмары, китообразные, ластоногие и другие животные.
Письменная работа с карточками:
1. Сравните биомассу продуцентов и консументов на суше и в океане.
2. Как распределена биомасса в Мировом океане?
3. Охарактеризуйте биомассу суши.
4. Дайте определение терминам или раскройте понятия: нектон; фитопланктон; зоопланктон; фитобентос; зообентос; процент биомассы Земли от массы косного вещества биосферы; процент биомассы растений от общей биомассы наземных организмов; процент биомассы растений от общей биомассы водных организмов.
1. Какой процент биомассы Земли от массы косного вещества биосферы?
2. Какой процент от биомассы Земли приходится на долю растений?
3. Какой процент от общей биомассы наземных организмов составляет биомасса растений?
4. Какой процент от общей биомассы водных организмов составляет биомасса растений?
5. Какой % солнечной энергии используется для фотосинтеза на суше?
6. Какой % солнечной энергии используется для фотосинтеза в океане?
7. Как называются организмы, населяющие толщу воды и переносимые морскими течениями?
8. Как называются организмы, населяющие грунт океана?
9. Как называются организмы, активно передвигающимися в толще воды?
Тест 1. Биомасса биосферы от массы косного вещества биосферы составляет:
Тест 2. На долю растений от биомассы Земли приходится:
Тест 3. Биомасса растений на суше по сравнению с биомассой наземных гетеротрофов:
1. Преобладает и составляет 99,2%.
2. Составляет 60%.
3. Составляет 50%.
4. Меньше биомассы гетеротрофов и составляет 6,3%.
Тест 4. Биомасса растений в океане по сравнению с биомассой водных гетеротрофов:
1. Преобладает и составляет 99,2%.
2. Составляет 60%.
3. Составляет 50%.
4. Меньше биомассы гетеротрофов и составляет 6,3%.
Тест 5. Использование солнечной энергии для фотосинтеза на суше в среднем составляет:
Тест 6. Использование солнечной энергии для фотосинтеза в океане в среднем составляет:
Тест 7. Бентос океана представлен:
1. Активно передвигающимися в толще воды животными.
2. Организмами, населяющими толщу воды и переносимыми морскими течениями.
3. Организмами, живущими на грунте и в грунте.
4. Организмами, живущими на поверхностной пленке воды.
Тест 8. Нектон океана представлен:
1. Активно передвигающимися в толще воды животными.
2. Организмами, населяющими толщу воды и переносимыми морскими течениями.
3. Организмами, живущими на грунте и в грунте.
4. Организмами, живущими на поверхностной пленке воды.
Тест 9. Планктон океана представлен:
1. Активно передвигающимися в толще воды животными.
2. Организмами, населяющими толщу воды и переносимыми морскими течениями.
3. Организмами, живущими на грунте и в грунте.
4. Организмами, живущими на поверхностной пленке воды.
Тест 10. От поверхности вглубь водоросли произрастают в следующем порядке:
1. Неглубоко бурые, глубже зеленые, глубже красные до — 200 м.
2. Неглубоко красные, глубже бурые, глубже зеленые до — 200 м.
3. Неглубоко зеленые, глубже красные, глубже бурые до — 200 м.
4. Неглубоко зеленые, глубже бурые, глубже красные — до 200 м.
Источник
Биомасса Мирового океана и ее состав, химические функции живого вещества
Мировой океан занимает более 2 /3 поверхности планеты. Физические свойства и химический состав вод океана предоставляет благоприятную среду для жизни. Так же, как на суше, в океане плотность жизни в экваториальной зоне наиболее высока и снижается по мере удаления от нее.
Состав
В верхнем слое, на глубине до 100м, обитают одноклеточные водоросли, составляющие планктон. Общая первичная продуктивность фитопланктона Мирового океана составляет 50 млрд. т. в год (около 1 /3 всей первичной продуктивности биосферы).
Почти все цепи питания в океане начинаются фитопланктоном, которым питаются животные зоопланктона (например, рачки). Рачки служат пищей многим видам рыб и усатым китам. Рыб поедают птицы. Крупные водоросли растут преимущественно в прибрежной части океанов, и морей. Наиболее высокая концентрация жизни — в коралловых рифах.
Океан гораздо бедней жизнью, чем суша: биомасса мирового океана в 1000 раз меньше. Большинство образовавшейся биомассы — одноклеточные водоросли и другие обитатели океана — отмирают , падают на дно и органическое вещество их разрушается редуцентами . Лишь около 0,01% из первичной продуктивности Мирового океана доходит через длинную цепь трофических уровней до человека в виде пищи и химической энергии.
На дне океана, в результате жизнедеятельности организмов, формируются осадочные породы: мел, известняки, диатомит и другие.
Химические функции живого вещества
Вернадский отмечал, что на земной поверхности нет химической силы, более постоянно действующей, а потому и более могущественной по своим конечным последствиям, чем живые организмы, взятые в целом. Живое вещество выполняет следующие химические функции: газовую, концентрационную, окислительно-восстановительную и биохимическую.
Окислительно-восстановительная
Эта функция выражается в окислении веществ в процессе жизнедеятельности организмов. В почве и гидросфере образуются соли, окислы. С деятельностью бактерий связано формирование известняков, железных, марганцевых и медных руд и т. д.
Газовая функция
Осуществляется зелеными растениями в процессе фотосинтеза, пополняющими атмосферу кислородом, а также всеми растениями и животными, выделяющими углекислый газ в процессе дыхания. Круговорот азота связан с деятельностью бактерий.
Концентрационная
Связана с накоплением в живом веществе химических элементов (углерода, водорода, азота, кислорода, кальция, калия, кремния, фосфора, магния, серы, хлора, натрия, алюминия, железа).
Отдельные виды являются специфическими концентраторами некоторых элементов: ряд морских водорослей — йода, лютики — лития, ряска — радия, диатомовые водоросли и злаки — кремния, моллюски и ракообразные — меди, позвоночные — железа, бактерии — марганца.
Биохимическая функция
Эта функция осуществляется в процессе обмена веществ в живых организмах (питание, дыхание, выделение), а также разрушения, деструкции отмерших организмов и продуктов их жизнедеятельности. Эти процессы приводят к круговороту веществ в природе, биогенной миграции атомов.
Источник
Сравнительная оценка биомассы.
Совокупность всех живых организмов биосферы, существующих в данный момент, численно выраженных в элементарном химическом составе в весе и энергии, В. И. Вернадский назвал живым веществом, сопоставляя его тем самым с окружающим косным веществом биосферы. Главным стационарным показателем живого вещества, его запасов, является биомасса основных групп организмов; главным динамическим показателем с точки зрения использования биологических ресурсов считают продукцию — производительность определенной группы организмов. Эти величины, для географических поясов Атлантического океана, представлены в табл. 4.
Наиболее богатыми по биомассе в океане являются субарктический и северный умеренный пояса. Биомасса на единицу площади в субарктическом поясе в 11 раз больше биомассы тропического и экваториального поясов и в 5 раз больше этого показателя для океана в целом.
Сравнение общих запасов живого вещества во всех океанах показывает, что Атлантический океан имеет биомассу (5.20 млрд. т), приблизительно равную биомассе Тихого океана (6.98 млрд. т) и во много раз превосходящую биомассу Индийского океана (1.46 млрд. т).
Сравнение первичной продукции Атлантического океана с другими океанами показывает, что величина его средней продукции на единицу площади (1.32 т/км 2 ) близка к оценке Индийского океана (1.36 т/км 2 ), но выше опенок Тихого (1.08 т/км 2 ) и Южного (1.06 т/км 2 ) океанов. Наиболее продуктивны в Атлантическом океане также субарктический и северный умеренный пояса. Продукция этих поясов в 2 раза больше средней величины для всего океана.
Резкое увеличение биомассы фитопланктона наблюдается в экваториальном поясе, где она достигает более 100 мг/м 3 . Такое же увеличение прослеживается близ берегов, особенно на шельфе Северной Атлантики, в районах островов. В тропических поясах биомасса фитопланктона близ этих границ обычно не превышает 100 мг/м 3 , в то время как в умеренных северном и южном поясах океана она достигает 1000 мг/м 3 и более.
Общая биомасса фитопланктона в Атлантическом океане равна 6.7 млн, т, что в 1.5 раза меньше биомассы Тихого океана (10.4 млн. т) и составляет 1/4 часть биомассы Мирового океана. Сравнение биомассы зоопланктона (табл. 5) в поверхностном слое Атлантического океана с другими океанами показывает, что средняя величина биомассы этого океана равна 8.3 т/км 2 , что несколько меньше. Тем в Северном Ледовитом и Тихом океанах (9.7 т/км 2 ), но больше чем в Индийском (7.5 т/км 2 ). Районы малопродуктивные (имеющие биомассу 3 ) составляют в Атлантическом океане 50% площади, районы с высокой биомассой (>200 мг/м 3 ) — только 6% площади, а районы со средней биомассой (от 50 до 200 мг/м3) занимают остальные 14% площади океана.
Наибольшее количество зоопланктона сосредоточено в субарктическом и северном умеренном поясах (табл. 5). Изменения биомассы мезопланктона в различных географических поясах в верхнем слое такие. что крайние значения отличаются в 6 раз (3,9 и 25 т/км 2 ) при средней оценке океана в 8.3 т/км 2 .
В табл. 6 представлены расчеты биомассы зоопланктона в горизонтальных круговоротах, границы которых в основном совпадают с океаническими фронтами. Соотношение площадей циклонических и антициклонических круговоротов—один из важных факторов, определяющих обилие жизни в океане. В Атлантическом океане, также как и в Тихом, области, с циклоническими круговоротами вод занимают 34% площади. А с антициклоническими—66%.
Распределение биомассы и годовой первичной продукция в океане[6] (живой вес)
Площадь, 109 км2
Количество мезопланктона в верхнем слое (0—100 м) и во всей толще океана
Площадь, 109 км2
Самыми богатыми в океане по количеству зоопланктона являются субполярные ареалы, которые связаны с субполярными циклоническими круговоротами.
Количество зоопланктона в этой циркуляционной системе в поверхностном слое составляет 24 т/км2, что в 3 раза больше средней величины для всего океана (8.6 т/км2).
В распределении биомассы зообентоса в океане прослеживаются определенные закономерности. Огромные площади открытых олиготрофных областей, удаленных от побережий, характеризуются очень низкими показателями биомассы, не превышающими 1 г/м2. Наиболее бедны центральные акватории тропических поясов океана, где биомасса снижается до десятков миллиграмм на квадратный метр. Однако в сравнительно узкой полосе экваториальной зоны наблюдается незначительное повышение биомассы (до 1, местами до нескольких граммов на 1 м2). Увеличение биомассы зообентоса наблюдается повсеместно вблизи материков и крупных островов во всех эпиконтинентальных морях. Особенно высокими показателями (до 100 г/м2 и более) характеризуются прибрежные районы умеренного пояса северной части Атлантики. Атлантический Океан по запасам зообентоса является самым богатым среди других океанов. Его запасы оцениваются в 1158.6 млн. т, при этом 99% их сосредоточено в прибрежных районах океана. В прибрежной зоне
океана в среднем на 1 м2 приходится 46 г биомассы зообентоса. Такое развитие зообентоса, возможно, определяется богатством его умеренного пояса (в среднем 80 г/м2). Обширные
Количество мезопланктона в верхнем слое (0—100 м) и во всей толще Атлантического, Северного Ледовитого и Южного океанов по циркуляционным системам
Площадь, 109 км2
районы северного умеренного пояса Атлантики характеризуются достаточным вертикальным перемешиванием вод, вызванным значительным притоком более холодных и менее
Распределение биомассы донной фауны на единицу площади (г/м) в разных циркумконтинентальных зонах Атлантического океана.
Географические пояса | Прибрежные районы | Центральные районы | Средняя биомасса на единицу площади в целом по поясу |
Арктический | 9 | — | 9 |
Северный умеренный | 81 | 0.51 | 80 |
Северный тропический | 42 | 0.28 | 14 |
Экваториальный | 10 | 0.43 | 5 |
Южный тропический | 13 | 0.38 | 2 |
соленых, вод Арктики и сезонной циркуляцией поверхностных вод, благодаря чему в целом пояс характеризуется максимальной общей биомассой донной фауны (598.84 млн. т) на площади 7.44 млн. км2. Средняя биомасса зообентоса в умеренном поясе прибрежных районов этого океана также отличается повышенными значениями
81 г/м2. Огромную роль в развитии донной фауны в океане играет скорость накопления органического неминерализованного вещества на дне, особенно обогащение прибрежных осадков органическим веществом благодаря наибольшей биологической продуктивности этих участков. Средняя биомасса на единицу площади в этом океане равна 15.9 г/м2 она значительно выше, чем в любом другом океане; кроме Северного Ледовитого (49 г/м2).
Повышенное содержание кислорода в придонных слоях вод и высокое содержание органического деминерализованного вещества в грунтах прибрежных районов Атлантики позволяют развиваться донной фауне в больших количествах не только в умеренном поясе, но и в остальных поясах, выделяя его среди других океанов, как самый богатый. Так, например, северный тропический пояс Атлантического океана отличается значительно более высокой биомассой на единицу площади (14 г/м2; табл. 6) по сравнению с тем же поясом Тихого океана (2 г/м2; расчеты авторов). Прибрежные районы этого пояса Атлантического океана в 2 раза богаче того же прибрежного района и пояса Тихого океана. Экваториальный пояс Атлантики также характеризуется более высокой, средней биомассой зообентоса в прибрежных районах (10 г /м2) относительно экваториальных прибрежных районов Тихого океана (9 г/м). В южном тропическом поясе океана средняя биомасса равна 2 г/м2.
Характерная особенность восточных прибрежных районов южного тропического пояса как Атлантического, так и Тихого океанов — развитие промежуточного слоя вод с кислородным минимумом. Формирование кислородного минимума в подповерхностных слоях этих океанов происходит под влиянием обилия органической жизни, способствующей интенсивному биохимическому потреблению кислорода, наличия скачка плотности, затрудняющего поступление кислорода из поверхностного слоя в глубинные слои, нахождения верхней границы богатых кислородом вод на большой глубине. Улучшенная аэрация придонных вод Атлантического океана позволяет развиваться донной фауне в повышенных количествах в центральных районах южного тропического пояса (до 0.38 г/м2 по сравнению с 0.30 г/м2 в Тихом океане), удаленных от побережья.
Сравнение отдельных океанов по биомассе показывает, что наиболее богат по ее общим запасам Атлантический океан, по продукции Атлантический и Индийский океаны равны. Уловы в Атлантическом океане достигают 0.25 т/км2-год, в Тихом океане—0.16—0.17 и в Индийском—всего 0.03 т/км2-год.
Дата добавления: 2019-07-15 ; просмотров: 226 ; Мы поможем в написании вашей работы!
Источник