- Взорвется Черное море: возможные причины, описание опасности, советы туристам
- Краткая информация
- Несколько слов о многослойности воды
- Что представляет собой сероводород?
- Кто обнаружил сероводород?
- Сероводород в воде: редкость или нет?
- Каковы причины появления сероводорода?
- Когда горело Черное море?
- Как решить проблему?
- Сероводород в Черном море не взорвется
Взорвется Черное море: возможные причины, описание опасности, советы туристам
- 22 Апреля, 2019
- Советы туристу
- Наталья Иванова
Красивое и манящее Черное море, куда ежегодно отправляются миллионы туристов из разных стран — что может быть прекраснее? Но мало кто знает, что в этих завораживающих волнах скрывается серьезная опасность. Слышали ли вы, что с Черным морем происходит? В чем кроется опасность? И каковы риски для отдыхающих туристов?
Краткая информация
Черное море – довольно глубокий природный водоем. Его наибольшая глубина составляет 2210 м. Площадь равна 422 000 км². Если посмотреть на него с большой высоты, его очертания напомнят вам овал с маленькой осью в 1150 км. Самая большая протяженность моря отмечена в направлении с севера на юг. Она равна 580 км.
Воды данного моря омывают берега Румынии, Украины, России, Турции, Болгарии и Абхазии. На первый взгляд, это вполне нормальный водоем, находясь в котором, вы можете ничего опасаться. Но так ли это на самом деле? И почему периодически возникают сообщения о том, что Черное море взорвется?
Несколько слов о многослойности воды
Черное море не представляет собой однородный естественный водоем. Наоборот, его воды как бы состоят из нескольких слоев. Так, в верхнем слое, глубина которого 100 м, находится чистая вода. Именно там живет большая часть морских организмов. В определенных участках толщина этого слоя доходит до 50 м.
Следующий слой принято называть «мертвой линзой». В нем нет ничего живого. Более того, именно в этом слое есть опасный для живых организмов сероводород. Именно из-за него многие интересуются тем, взорвется Черное море или нет.
Что представляет собой сероводород?
Если вспомнить уроки химии, то видно, что сероводород является устойчивым соединением водорода и серы. Процесс распада сероводорода происходит лишь при температуре в 500 ℃. Данный газ не имеет цвета. А вот запах от него исходит весьма специфический. Кто знаком с ним, сравнивает его со смрадом от тухлых яиц.
Чтобы проверить наличие сероводорода в воде, достаточно опустить в нее какой-либо металлический груз. После пребывания в воде с газом такой предмет окислится и приобретет черный цвет. К слову, некоторые считают, что свое название море получило именно из-за данного феномена.
Кто обнаружил сероводород?
Впервые о наличии сероводорода в морской воде стало известно после крупной океанографической экспедиции, состоявшейся в 1890 году. Открытие принадлежало русскому геологу Николаю Андрусову.
Согласно проведенному исследованию, удалось выяснить, что море всего на 10 % состоит из чистой воды и на 90 % из сероводорода. В Черном море опасность. Более того, слой вредоносного вещества постоянно увеличивается в размере и иногда проскакивает в чистый слой с живой водой. С одной стороны, это губительно сказывается на жизни морских обитателей, а с другой – увеличивает пожароопасность территории.
Дело в том, что данный водоем расположен в сейсмически активном районе. При любых природных аномалиях происходит выброс сероводорода в воздух. Из-за этого возможен взрыв. Поэтому и существует большая опасность, что Черное море взорвется. По мнению ученых и исследователей, если это вдруг случится, получится мощнейший взрыв. Сравнить его можно, разве что с падением гигантского астероида на Землю.
Сероводород в воде: редкость или нет?
Наличие сероводорода в морской воде не является большой редкостью. Данное вещество легко встретить и в других океанах и морях нашей планеты. Однако его содержание в других естественных водоемах не столь велика. Ситуация с Черным морем куда более опасная.
Все усложняет расположение водоема. Поскольку он отделен от Мирового океана, ему не хватает естественного водообмена. Из-за этого происходит накопление сероводорода. По этой же причине вопрос о том, может ли взорваться Черное море, не выглядит каким-то фантастическим предположением. Опасность есть. Никто не может предположить, в какой момент времени скопление сероводорода в воде дойдет до критического максимума.
Каковы причины появления сероводорода?
Как попал сероводород в воду, спорный вопрос. До сих пор над ним работают множество ученых. Одни из них уверены, что вредный газ просочился из морских глубин. По их версии, из-за сейсмической активности в дне возникли трещины. А по ним просочился газ.
Иные уверены, что причина кроется в человеческом факторе. Из-за большого количества выбросов удобрений и сточных вод происходит гибель многих морских обитателей. Такое человеческое вмешательство перенасыщает питательную морскую среду. Это приводит к обильному цветению фитопланктона и резкому снижению уровня прозрачности воды.
В конечном итоге живой слой воды забивается разросшимися гирляндами фитопланктона и перекрывает доступ к солнечному свету. Остальные живые организмы и растения не получают достаточного тепла и света. Вследствие этого многие из них погибают.
В свою очередь, на их место приходят более простые и неприхотливые растения, которые быстро растут. В итоге бактерии не успевают перерабатывать большое количество органических останков, попадающих на дно.
Это приводит к массовому замору фауны и морской флоры. Например, к концу 2003 года таким вот образом вымерли красные водоросли филлофоры. Напомним, что этот «живой ковер» занимал почти весь северо-западный шельф моря. А ведь именно он помогал вырабатывать свыше 2 миллионов кубометров кислорода за день.
Другие эксперты говорят об активности особых бактерий, в процессе жизнедеятельности которых и возникает вредоносный сероводород в Черном море. Взорвется он или нет — вопрос серьезный. Однако в последний момент о нем практически все позабыли. Вот только проблема так и не пройдет сама собой. Опасность все еще существует. И многие реальные факты это подтверждают. Об этом поговорим далее.
Когда горело Черное море?
Как оказалось, ранее уже был случай, когда пожар в море все же был. Речь идет о событии 12 сентября 1927 года, случившемся в Крыму. В тот день произошло одно из самых масштабных землетрясений. Это было явление на 8 баллов. Его эпицентр зафиксировали в районе Ялты. Катаклизм стал причиной многочисленных оползней, потери всего урожая на полях, а также массовых разрушений домов.
На тот момент многие жители рассказывали об отвратительном тухлом запахе, витавшем в воздухе. А некоторые из них рассказывали об огненном пламени, возникающем на поверхности воды. Говорят, что Черное море горело, образовывая гигантские огненные столбы. Пожар усугублялся дымом и смрадом. По версии очевидцев, высота этих столбов доходила до нескольких сотен метров. Ученые просто уверены, что причиной возгорания стал именно сероводород.
Пару лет назад произошел еще один случай, связанный с мощным выбросом сероводорода на поверхность. Дело было в Коблево. В тот день берег моря был переполнен тушками мертвой рыбы. По версии специалистов, в общей сложности на сушу выбросило около 100 тонн рыбы. Многие ученые просто уверены, что данная трагедия повторится. А произойти это может в любой момент.
Как решить проблему?
Взорвется Черное море в будущем или нет, сказать сложно. Но то, что это реальная проблема и угроза — факт. Реально ли ее предотвратить? Несмотря на мнения некоторых скептиков, решить проблему все же можно. Например, достаточно усилить контроль над осуществляемыми выбросами удобрений и попаданием в воду прочих вредных веществ.
Второй важный момент заключается в безопасном использовании продуктов нефтеперерабатывающей промышленности. Не стоит испытывать судьбу и прокладывать по морскому дну большое количество нефтепроводов и газопроводов. Все знают, что в таких условиях контролировать работоспособность оборудования крайне сложно. А халатное отношение к нему чревато утечкой вредоносных веществ в море.
И, наконец, сероводород можно использовать как альтернативное топливо. В настоящий момент многие ученые уже работают над этим. По их словам, все же существует вероятность использования сероводорода в мирных целях. Например, возможно аккумулировать из сероводорода водород. И тогда его реально использовать в современной энергетике.
В заключение хотелось бы отметить, что во время отдыха на Черном море следует соблюдать правила безопасности. Не стоит долго находиться в воде. При избыточном скоплении сероводорода может возникать сладковатый привкус на языке. В случае такого явления необходимо быстро покинуть данное место. Будьте бдительны!
Источник
Сероводород в Черном море не взорвется
В массовой печати появились сообщения о возможности взрыва сероводорода в Черном море. Правомерны ли подобные утверждения и что надо предпринять для уменьшения количества сероводорода в глубинных и поверхностных слоях воды? Эти вопросы обсуждаются в публикуемой ниже статье.
В. И. БЕЛЯЕВ, Е. Е. СОВГА
СЕРОВОДОРОД В ЧЕРНОМ МОРЕ НЕ ВЗОРВЕТСЯ
В 1890 г. русская океанографическая экспедиция, работавшая под руководством академика , обнаружила в глубинах Черного моря заметную концентрацию растворенного сероводорода — ядовитого газа с запахом тухлых яиц. Как показали дальнейшие исследования, этот газ присутствует на всей глубинной акватории Черного моря, приближаясь к поверхности примерно на 100 м в центральной части моря и на 150—250 м у берегов. Такое различие в положении верхней границы сероводородной зоны обусловлено спецификой циркуляции водных масс, при которой наблюдается подъем воды (апвеллинг) в центре моря и их опускание (заглубление) на его периферии.
Черное море — единственное на земном шаре, в котором сероводородом постоянно заражены огромные массы воды. В морях и океанах имеются участки, где сероводородное заражение возникает периодически или даже сохраняется в течение года, например в норвежских фиордах и впадине Карьяко в Карибском море. В океанах временами появляются обширные глубинные анаэробные водные массы, зараженные сероводородом. Они мигрируют по акватории, иногда вторгаются в шельфовые области, что пагубно сказывается на состоянии прибрежных экологических систем. Так, в начале 50-х годов в заливе Уолфиш-Бей (Атлантическое побережье юго-западной Африки) апвеллинги вынесли к поверхности образовавшуюся в глубине водную массу, содержащую сероводород. Наблюдалась массовая гибель рыбы, на побережье до 40 миль в глубь материка отмечался запах
© БЕЛЯЕВ Валерий Иванович— академик АН УССР, председатель Комиссии АН УССР по проблемам Мирового океана. СОВГА Елена Евгеньевна — кандидат геолого-минералогических наук, старший научный сотрудник Морского гидрофизического института АН УССР.
сероводорода, что вызвало беспокойство населения. Водные массы, зараженные сероводородом, систематически вторгаются на шельф Аравийского моря — в северо-западной части Индийского океана. При этом также происходит массовая гибель рыбы. Локальные образования сероводорода регистрируются в Каспийском море и даже в мелководном Балтийском.
В геологической истории Черного моря образование сероводорода всегда связывалось с проникновением через пролив Босфор более соленых средиземноморских вод в глубинные слои Черного моря. Вместе с тем в море поступает и значительный объем речного стока, в результате чего между распресненными поверхностными и солеными глубинными водами возникает резкий скачок плотности — галоклин. Изменчивая циркуляция водных масс сдвигает галоклин: то поднимает его ближе к поверхности, то опускает в глубину. Как правило, верхняя граница сероводородной зоны начинается сразу же под галоклином, затрудняющим приток в эту зону кислорода из верхних слоев. В ходе климатических колебаний уровня океана связь Черного моря со Средиземным через пролив Босфор то нарушалась, то вновь возобновлялась. Последний раз она восстановилась примерно 6— 7 тыс. лет назад. За это время в Черном море сформировалась глубинная толща вод, содержащая сероводород. Она занимает около 90Х объема моря.
Известны три главных источника появления сероводорода в водоемах Земли. Во-первых, он образуется за счет восстановления присутствующих в воде сульфатов при бескислородном разложении органических веществ. Разложение осуществляется с участием анаэробных сульфатредуцирующих бактерий, которые используют кислород сульфатов в процессе своей жизнедеятельности, высвобождая сероводород. Во-вторых, этот газ возникает при гниении органических веществ, содержащих серу. И в-третьих, он может поступать из земной коры через расщелины морского дна и с гидротермальными водами.
Обобщение материалов исследований сероводородной зоны Черного моря выполнил известный океанолог [1]. Он проанализировал весь имевшийся по данному вопросу материал вплоть до 1965 г., то есть до развития процесса эвтрофирования моря, распространившегося ныне на всю его акваторию. предположил, что если увеличится поступление органического вещества в Черное море (например, вследствие усиления его биологической продуктивности или большого притока малостойких органических соединений, попадающих в море с речными водами), то изменится химический состав моря. Следствием этих изменений будут возможные локальные поднятия верхней границы глубинной сероводородной зоны, то есть поднятие «границы жизни» в море.
Ныне эти предположения начинают оправдываться. По данным, полученным за последние полтора десятилетия, экологическая обстановка на Черном море ухудшилась. Не только в прибрежных, но и в открытых водах моря обнаружен избыток органического вещества. Изменилась и структура биологических сообществ: практически исчезли крупные рыбы-хищники, сократилось поголовье дельфинов, необычно размножились медуза-ауре-лия и микроводоросль ночесветка, уменьшились придонное поле водоросли филлофоры и колонии мидий в северо-западной мелководной части моря, где летом теперь часто появляются обширные заморные зоны. Ясно,
Сероводород в Черном море не взорвется
что подобная ситуация рано или поздно должна отразиться на балансе сероводорода в море. Но в какой мере этот баланс определяется влиянием природных, а в какой антропогенных факторов — пока достоверно неизвестно. Ответ на вопрос может быть получен только в результате длительных наблюдений за сероводородной зоной моря. Решение этой междисциплинарной проблемы потребовало привлечения специалистов различного профиля: гидрофизиков, гидрохимиков, гидробиологов, а также специалистов в области математического моделирования экологических систем.
В 1984 г. состоялся рейс научно-исследовательского судна «Витязь» Института океанологии им. АН СССР. Его участники исследовали область верхней границы сероводородной зоны с помощью подводного аппарата «Аргус». Изучались особенности распределения химических соединений в слое контакта кислородной и сероводородной зон, где происходит окисление сероводорода. Визуально -наблюдались рыбы и другие организмы, проникающие в эту зону [2].
В 1985—1986 гг. проводились работы по межведомственной программе Академии наук Украины «Исследование динамики сероводородной зоны Черного моря с целью разработки методов и средств предотвращения негативной перестройки его экологической системы». В рамках данной программы осуществлено шесть комплексных экспедиций на судах «Михаил Ломоносов», «Академик Вернадский», «Профессор Колесников» и др. В ходе экспедиций, работавших во все сезоны года, выполнено 430 глубоководных станций. Для обнаружения возможных геологических источников сероводорода в Черном море отбирались пробы глубинной воды на расстоянии 5—10 м от дна, а также пробы донных отложений. Измерялись не только концентрации сероводорода и кислорода, но и содержание серы в других формах (тиосульфаты, сульфаты), брались пробы фито-, зоопланктона, бактерий, хлорофилла, определялись оптические и гидрологические характеристики.
Исследование сероводородной зоны продолжалось и после завершения этой программы. Во всех экспедициях отбор проб глубинной воды осуществлялся с пространственным интервалом 30 миль батометрами зондирующего комплекса МГИ-4102 (Исток) с дискретностью измерений по вертикали 5—10 м в зоне взаимодействия кислорода и сероводорода. Измерение содержания сероводорода в пробах глубинной морской воды — непростая задача. Концентрации сероводорода в этих пробах малы, и он быстро окисляется при случайном контакте с кислородом воздуха. Поэтому при отборе проб глубинной воды, содержащей сероводород и другие восстановленные формы серы, обеспечивалась их полная изоляция от атмосферы.
В результате экспедиционных исследований определена межсезонная и внутрисезонная изменчивость границы сероводородной зоны на протяжении года. Ближе всего к поверхности (70—90 м) верхняя граница зоны находится весной в районе единого циклонического круговорота в центре моря. Летом и осенью при наличии двух стационарных циклонических круговоротов в их центре глубина границы сероводорода составляет 95— ПО м. На периферии круговоротов во все сезоны отмечено заглубление границы до 150—190 м. Данные о межгодовой изменчивости границы серо-
водородной зоны сильно зависят от длительности временного интервала. Так, судя по оценкам изменения положения этой границы за довольно длительный период (около 60 лет), ее средняя глубина мало изменялась [3]. Но внутри этого отрезка времени были периоды как поднятий, так и заглублений верхней границы сероводородной зоны. В 1984—1986 гг. отмечена тенденция ее поднятия, а затем, вплоть до 1990 г. — незначительное заглубление. Академик Т считает, что на фоне регистрируемых межгодовых вариаций не наблюдается постоянное однонаправленное изменение положения границы сероводородной зоны [2]. Этот вывод совпадает с мнением большинства специалистов, изучающих данную проблему. Самое высокое положение границы сероводородной зоны за всю историю изучения Черного моря отмечалось весной 1988 г., когда сероводород был зафиксирован на глубине 70 м в центре единого циклонического круговорота [3]. Но такое поднятие оказалось кратковременным. Когда спустя 20 дней в этот район вернулось научно-исследовательское судно, глубина отбора проб воды, соответствовавшая появлению сероводорода, составила уже 90—95 м. Такие локальные поднятия не стабильны во времени и пространстве и, как правило, вызваны кратковременными активными синоптическими возмущениями.
Следует подчеркнуть, что самое понятие «верхняя граница сероводородной зоны» довольно условно, оно определяется множеством трудно контролируемых факторов. Верхняя граница — это глубина, на которой в соответствии с принятой методикой обнаруживается присутствие в пробах воды сероводорода (концентрация порядка 0,1 мл/л). Кстати, более чувствительная методика измерений выявляет следы сероводорода в Черном море и на более высоких горизонтах, вплоть до поверхности. Положение верхней границы зависит от скорости реакции окисления сероводорода, скорости доставки (благодаря вертикальному водообмену) кислорода из верхних и сероводорода из нижних слоев в промежуточный слой, где происходит окисление. Наконец, верхняя граница сероводородной зоны может перемещаться вместе с водой при возникновении вертикальных течений. Помимо медленных, климатических изменений вертикальной циркуляции в море, как уже отмечалось, наблюдаются быстрые вертикальные подъемы и опускания вод, связанные с вихревыми движениями. Интенсивность этих движений обусловлена активностью атмосферных процессов. Поэтому весьма трудно, не располагая данными достаточно длительных наблюдений, определить, чем обусловлены каждый раз аномальные вертикальные подъемы границы сероводородной зоны: интенсификацией атмосферных процессов, усилением образования или ослаблением окисления сероводорода. Процессы образования сероводорода связаны с деятельностью бактерий, которая также зависит от климатологических факторов, включая солнечную активность.
С точки зрения математической статистики, чтобы получить вывод о тенденции изменения положений верхней границы сероводородной зоны, необходимо определить средние значения характеристик нестационарных случайных полей по относительно малой выборке наблюдений. Это обстоятельство сводит задачу по динамике верхней границы лишь к оценке тенденций ее вертикальных смещений.
Специалисты, изучающие сероводородную зону в Черном море, судят о ее
поведении по данным независимых наблюдений многих процессов в море (физических, химических, биологических), причем натурные наблюдения сочетаются с численными экспериментами на математических моделях. Для правильного понимания поведения сероводородной зоны требуются надежные представления о ее происхождении. Экспедиционные исследования указывают на сульфатредукцию как основной процесс восполнения сероводорода в Черном море. При этом главными причинами существования здесь сероводородной зоны считаются плотностная стратификация, затрудняющая вертикальный обмен, и большой биогенный сток с побережья в расчете на единицу площади моря. Оба эти фактора обеспечивают интенсивную сульфатредукцию, приводящую к образованию сероводорода в глубинной анаэробной зоне. Экспедиционные данные подтверждают очаговый характер сульфатредукции, причем расположение этих очагов приурочено к местам поступления мертвого органического вещества с шельфа.
Вместе с тем оба упомянутых фактора находятся под сильным антропогенным прессом. Так, зарегулирование стока рек уменьшает объем пресных вод, поступающих в верхний слой моря, выравнивает стратификацию и может улучшить вертикальный водообмен. Усиление биогенного стока в результате промышленных, бытовых и сельскохозяйственных загрязнений вызывает увеличение продукции мертвого органического вещества, стимулирующего процесс сульфатредукции и восполнение в море сероводорода. Одновременно в аэробной зоне тратится кислород на разложение дополнительных количеств органического вещества, что снижает возможность быстрого окисления сероводорода в случае его локальных подъемов. Поскольку большая часть органического вещества образуется в Черном море на шельфе, экосистема последнего в значительной степени определяет состояние сероводородной зоны в глубоководной части моря.
По приближенным оценкам, за счет антропогенных загрязнений в Черном море уже сегодня может возникнуть дополнительное количество сероводорода, сравнимое с тем, которое образуется естественным путем. Увеличение запаса сероводорода в глубинных водах повышает вероятность его вторжения в кислородную зону, сопровождающегося губительным воздействием на обитающих в ней рыб, водоросли и моллюсков. Повышается опасность выхода сероводорода и непосредственно на поверхность моря в прибрежных зонах курортного водопользования. Хотя эти явления могут быть кратковременными, достаточно редкими (как ураганы в атмосфере) и происходить при определенных гидрологических и метеорологических условиях, они достаточно неприятны. Как ни мала концентрация сероводорода в глубинной черноморской воде, в контакте с воздухом он издает вполне заметный запах. Ощущение его уже означает превышение концентрации сероводорода в воздухе выше порога безопасности для людей. Пока такие явления в курортных зонах Черного моря не отмечались. Однако назрела необходимость в создании постоянной службы наблюдений за концентрацией сероводорода в Черном море, чтобы вовремя предупреждать население об аномальном подъеме сероводородных вод, информировать о правилах поведения в таких ситуациях.
Опасения специалистов о негативных последствиях развития сероводо-
родной зоны в условиях антропогенного загрязнения, по всей вероятности, спровоцировали появление в массовой печати статей о возможности взрыва сероводорода в Черном море. Чтобы предотвратить катастрофу, предлагалось «просто» извлекать сероводород из откачиваемой глубинной воды. Высказана идея о том, что при сжигании сероводорода можно получать энергию и товарную серу, построив для этой цели на берегу Черного моря химический комбинат.
Следует отметить, что растворенная газообразная фаза сероводорода в Черном море составляет в расчете на одну тонну морской воды всего 0,24 г-на глубине 300 м, 1,2 г — на глубине 1000 м и до 2,2 г — у дна. на глубинах около 2000 м. Сероводород обладает большой растворимостью: даже при атмосферном давлении можно растворить до 12 кг в 1 т воды, а в глубинных водах, находящихся под давлением порядка 200 атм, — во много раз больше. Таким образом, концентрация поднятого на поверхность глубинного сероводорода составляет менее 0,0001 доли насыщающего значения. При таких малых концентрациях газа говорить о возможности выхода его в пузырьках из раствора в результате встряхивания не приходится.
Тем не менее при незначительной концентрации сероводорода общее его количество, ежегодно образуемое в черноморском бассейне естественным путем, порядка 107— 10е т, а может быть и более. Точной величины мы не знаем, но есть все основания считать, что она переменная, изменяющаяся в широких пределах вместе с изменением положения верхней границы сероводородной зоны. Чтобы окислять такое количество сероводорода, нужно создать гигантскую промышленную установку, через трубы которой одновременно прокачивать глубинную воду в количестве, равном нескольким стокам таких рек, как Волга или Дунай. Даже при идеальной экологической чистоте основного производства серы, строительство столь масштабного промышленного комплекса в курортной зоне Черноморского побережья не обойдется без негативных последствий для окружающей среды. Не случайно здесь запрещено возводить промышленные предприятия. В то же время мы не можем надежно рассчитать воздействие этой установки на сероводородную зону моря, гарантировать успех ее работы и оценить отдаленные экологические последствия.
В абсурдности предложений об откачке глубинного сероводорода проглядывает порочная, практиковавшаяся в нашей стране, концепция использования водных ресурсов. В ней практически игнорировался тот факт, что водоемы — это не просто водные массы, а сформировавшиеся в результате длительной эволюции экологические системы — своеобразные природные фабрики, на которых трудятся живые организмы, преобразуя энергию Солнца в продукты, непосредственно потребляемые человеком — рыбу, моллюсков, ракообразных. Осуществление этой концепции природопользования привело к гибели экосистемы рек, озер, внутренних морей. В нашей стране потеряны огромные ресурсы ценнейшей рыбы, которую раньше получали из рек и озер, Черного и Азовского морей. Вместе с тем существовала возможность путем осторожного, тщательно обоснованного поэтапного гидротехнического и гидромелиоративного обустройства этих водоемов многократно усилить их природную способность производства рыбы и других «даров природы». К сожалению, у рек энергия взята таким
Сероводород в Черном море не взорвется 53
способом, при котором были разрушены их экосистемы. С помощью этой энергии получены металлы, из них построены суда, которые отправились «за хеком» в дальние моря.
Реальнее воздействовать на сероводородную зону Черного моря, предотвращая загрязнение вод, которые поступают с береговым стоком. Важно не смешивать отходы разного происхождения, тогда их можно непосредственно на каждом производстве пропускать через специализированные установки утилизации. Ведь в принципе не существует отходов, не являющихся сырьем для какого-нибудь производства. Все это стоит дополнительных затрат, но только так можно обеспечить чистоту рек, озер, воздуха, при этом и море станет чистым и само справится со своими проблемами, как оно справлялось с ними свыше 7 тыс. лет.
Безусловно, нельзя категорически возражать против предложений о добыче тех или иных веществ из морской воды, в том числе и серы. В морской воде сероводород присутствует не только в свободном, но и в связанном состоянии, в составе гидросульфидов (солей). С учетом последних 1 т глубинной воды содержит 9—12 г сероводорода и его соединений. Отметим для сравнения, что в 1 т каменного угля может быть от двух до 80 кг серы. При сжигании такого угля образуются ядовитые оксиды серы, отравляющие окружающую среду. Поэтому прежде всего нужно решить задачу извлечения серы из каменного угля. Тем не менее ее добыча из черноморской воды, возможно, когда-нибудь окажется целесообразной. Но поскольку Черноморское побережье — всесоюзная здравница, планы создания здесь очередных промышленных гигантов затрагивают общенародные интересы и должны уже на уровне идей подвергаться тщательной экологической экспертизе и широкому общественному обсуждению Разумеется, при нынешнем состоянии культуры производства такие проекты вредны.
Свое утверждение о возможности взрыва сероводорода в Черном море авторы статей, опубликованных в массовой печати, основывают на сведениях о пламени, появлявшемся во время землетрясения 1927 г. над поверхностью моря, напротив юго-западной части Крыма. Приводятся свидетельства очевидцев этого явления. Однако полностью игнорируется тот факт, что оно изучено и результаты исследований опубликованы в научной печати. В Крыму в то время работала экспедиция под руководством . Ее участники немедленно вышли на катере в море, взяли пробы воды, обследовали дно и установили, что произошел выброс газообразных углеводородов с примесью сероводорода из земных недр. Иными словами, «сработали» грязевые вулканы на дне моря. Таким образом, растворенный в глубинных водах сероводород никакого отношения к пламени, вспыхнувшему над морем в 1927 г., не имел.
Итак, естественная сероводородная зона, вероятнее всего, сама по себе никому не угрожает. В то же время это не мертвая вода, а насыщенная жизнью бактериальная экологическая система, хорошо сбалансированная по своим функциям с аэробными экосистемами моря. Ее бактериальное население обеспечивает круговорот углерода и биогенных веществ ничуть не хуже, а возможно, даже лучше, чем глубинные экосистемы морей без сероводорода.
Всем известна роль почвы: не будь ее, поверхность Земли быстро по-
крылась бы трупами животных и растений, разомкнулся бы круговорот веществ в биосфере и прекратилась бы сама жизнь. В морях роль почвы выполняют глубинные экосистемы, а в Черном море — экосистема сероводородной зоны, обеспечивая весьма высокую потенциальную биологическую продуктивность черноморского шельфа. К сожалению, этот природный потенциал сейчас слабо реализуется, так как экосистемам бухт, лиманов, прибрежных акваторий, где рыба нерестилась или зимовала, нанесен тягчайший удар хозяйственной деятельностью человека. Предложение уничтожить сероводородную зону, разрушить ее экосистему, выглядит так же, как предложение сжигать украинский чернозем для получения электроэнергии.
Сероводородная зона имеет сложную вертикальную структуру. На каждом «этаже» обитает свой вид бактерий, выполняющие определенную функцию, в том числе создающих биомассу за счет энергии сероводорода. Разрушение этой зоны путем грубого вмешательства довершит разрушение экосистемы Черного моря и в конечном счете приведет к экологической катастрофе. Это соображение высказывается на тот случай, если кому-нибудь в будущем придет идея построить на берегу Черного моря несколько атомных станций и с их помощью добывать серу из черноморского сероводорода.
Загрязнения, поступающие в море, производят массированное комбинированное действие. Смываемые с полей ядохимикаты убивают зоопланктон и рыбу, а удобрения способствуют массовому размножению одноклеточных водорослей. Из-за гибели зоопланктона и рыб водоросли некому поедать, они отмирают и гниют, поглощая кислород. Это приводит к гибели оставшегося зоопланктона, рыб и других водных животных. На шельфе Черного моря образуются обширные бескислородные «заморные» зоны. Иногда они охватывают почти всю северо-западную акваторию. В их бескислородной среде образуется сероводород, поднимающийся к поверхности моря. Этот сероводород, обусловленный загрязнениями, не имеет никакого отношения к глубинному. Однако уничтожение человеком кислорода в поверхностных слоях моря создает условия и для локального поднятия глубинного сероводорода с вертикальными струями в центрах вихревых движений. По мнению , возникновение заморных зон связано с состоянием вертикального водообмена, который, в свою очередь, обусловлен общей погодной ситуацией. Подобные ситуации повторяются с периодичностью солнечной активности — примерно через 11 лет. Последний раз сильные заморы в Черном море наблюдались в 1983 г. В связи с тем, что загрязнение моря за истекшие годы резко возросло, становятся еще более вероятными сильные заморы, образование сероводорода и выходы его на поверхность в прибрежных водах в летние месяцы (июль—август) 1991 — 1995 гг., при очередном возникновении погодной ситуации, способствующей заморам. Наибольшая их вероятность приходится на 1994 г.
Борьба с загрязнением моря способствует не только восстановлению его рыбных запасов, целебных рекреационных свойств вод, выводу прибрежных территорий из состояния экологического бедствия, но и предотвращению локальных катастроф, связанных с образованием сероводорода в прибрежных морских водах. Подчеркнем еще раз; загрязнение моря создало вполне реальную опасность локальных выходов сероводорода на по-
Сероводород в Черном море не взорвется 55
верхность моря и в атмосферу у его берегов. Места выходов определяются погодной ситуацией и заранее не предсказуемы. Подобные катастрофы непосредственно не связаны с глубинной сероводородной зоной, поэтому откачка из нее сероводорода не сможет их предотвратить.
В настоящее время проводятся теоретические исследования взаимодействия кислорода и сероводорода в водах Черного моря с целью установления механизмов, обусловливающих динамику верхней границы сероводородной зоны [4, 5]. На моделях установлены основные закономерности поведения этой границы в зависимости от характеристик вертикального обмена и мощности источников кислорода и сероводорода. Анализ процессов формирования вертикального распределения кислорода и сероводорода в Черном море, выполненный разными авторами, показал, что основное влияние на концентрацию кислорода и сероводорода на различных глубинах оказывает зависимость коэффициента турбулентной диффузии от глубины. Уменьшение этого коэффициента практически до нуля в области галоклина вызывает снижение потока кислорода в сероводородную зону. Увеличение мощности источников на порядок и даже два порядка приводит к незначительному поднятию ее верхней границы. Эти закономерности качественно хорошо согласуются с данными экспедиционных наблюдений.
В Академии наук Украины разработана модель бактериальной экосистемы сероводородной зоны Черного моря [61. В этой экосистеме осуществляется деструкция органического вещества и замыкается круговорот биогенных веществ, поддерживающих биологическую продуктивность моря. Антропогенное влияние на ее состояние сказывается прежде всего на производстве мертвого органического вещества и на процессе формирования вертикального профиля солености при зарегулировании стока рек. Основное назначение модели — прогнозирование возможных последствий эволюции сероводородной зоны в условиях возрастающих антропогенных нагрузок.
Основу модели составили геохимические процессы, связанные с круговоротом серы в море. Все представленные на рисунке неорганические формы серы возникают в море как промежуточные продукты ряда последовательных химических и микробиологических процессов, обусловливающих образование и накопление сероводорода в системе, а также его убыль в результате химического и микробиологического окисления.
Когда ставится задача математического моделирования сложной многокомпонентной системы, следует прежде всего определить «характеристический вектор» этой системы, то есть минимальный набор компонентов, необходимый и достаточный для адекватного целям моделирования математического описания рассматриваемой сложной системы. При создании модели экосистемы сероводородной зоны задача выбора характеристического вектора была решена в первом приближении. В модели рассматривались семь компонентов — концентрации кислорода, сероводорода, тиосульфатов, углерода органических веществ, сульфатредуци-рующих бактерий, тионовых бактерий и молекулярной серы. Кроме того, были приняты во внимание еще четыре компонента, относящиеся к внешним факторам: концентрация нитратов, аммиака, соединений марганца и сульфатов. Считается, что они не лимитируют процессы в экосистеме
Модель представлена системой дифференциальных уравнений, она учитывает перенос рассматриваемых компонентов течениями и турбулентным движением. В ней нашли отражение практически все процессы, влияющие на компоненты экосистемы сероводородной зоны.
На первом этапе рассматривался одномерный вариант модели для получения вертикальных профилей компонентов этой системы, которые измерялись во время экспедиций. В качестве идеализированной ситуации рассчитано формирование вертикальных профилей в вертикальной двуслойной составной струе, имеющей различные скорости и коэффициенты турбулентного обмена в своей верхней и нижней частях. Такую составную струю можно представить как результат глубинного крупномасштабного подъема вод (в центре моря) и пристроившейся к нему синоптической струи, порожденной вихрем в верхнем слое моря. Полученные вертикальные профили перечисленных выше компонентов хорошо согласуются с данными наблюдений. Проведение численных экспериментов с моделью дало необходимые оценки роли различных факторов, влияющих на положение верхней границы сероводородной зоны.
В заключение отметим, что экологическая ситуация на Черном море
продолжает оставаться неблагоприятной. Нам представляется, что организация в его бассейне экологического мониторинга позволит осуществить поэтапный вывод экосистемы Черного моря из кризисного состояния.
1. Формирование современного химического состава вод Черного моря. Л.: Гидрометеоиздат, 1975.
2. Vinogradov M. E., Flint M. V. and Shushkina E. A. Vertical distribution of mesoplankton in the open area of the Black Sea // Marine Biology.1985. N 89. P. 95—107.
3. Изменчивость положения границы анаэробных вод в Черном море
по многолетним данным // Комплексные океанографические исследования Черного моря. Севастополь, 1990. С. 76—114.
4. , , Бегоцкий СВ. Кинетика трансформации соединений
серы и моделирование тонкой химической структуры границы сероводородной зоны в Черном море // Водные ресурсы. 1988. № 2. С. 90—95.
5. , , Математическое моделирование динамики сероводородной зоны Черного моря // Вестн. АН УССР. 1987. № 5. С. 18—26.
6. , Совга ЕЕ. Геохимическая модель сероводородной зоны Черного моря
и ее математическое представление // Процессы формирования и внутригодовой изменчивости гидрофизических и гидрохимических полей Черного моря. Севастополь, 1988. С. 75—83.
Источник