Что такое метод мора сопромат

Сопротивление материалов (сопромат)

Определение перемещений методом Мора

Суть метод Мора в следующем. Если необходимо определить перемещение в заданной точке по заданному направлению, то наряду с заданной системой внешних сил в этой точке прикладывается внешнее усилие Ф=1 в интересующим нас направлении.

Далее составляется выражение потенциальной энергии системы, состоящей из n участков с учетом одновременного действия заданной системы внешних сил и силы Ф:

(6.1)

,

где Кх, Ку-безразмерные величины, зависящие от геометрической формы сечения и учитывают неравномерность распределения касательных напряжений в сечении при поперечном изгибе. Так, например, для прямоугольника Кх=Ку=1,2, а для двутавра при изгибе в плоскости его стенки K=F/FCT, где F-площадь всего сечения двутавра, FCT -площадь стенки; Nz, Qx, Qy, Mz, Mx, My-внутренние силовые факторы, возникающие в поперечных сечениях заданной стержневой системы; -внутренние силовые факторы, возникающие в поперечных сечениях заданной системы, от действия усилия Ф=1.

Дифференцируя выражение (6.1) по Ф, и полагая после этого Ф=0, находим искомое перемещение в искомой точке в нужном направлении.

. (6.2)

Полученные интегралы называются интегралами Мора и широко применяются при вычислении перемещений стержневых систем.

Для систем, элементы которых работают на растяжение или сжатие (например, шарнирно-стержневые системы-фермы), в формуле Мора (6.2) отличен от нуля будет только слагаемое, содержащее продольные силы. При расчете балок или рамных систем, работающих в основном на изгиб, влияние поперечной и продольной силы на перемещение несущественно и в большинстве случаев их влияние не учитывается. В случае пространственной работы стержня или стержневой системы, элементы которой работают, в основном, на изгиб и кручение, в формуле Мора обычно ограничиваются рассмотрением слагаемых, содержащих изгибающие и крутящие моменты.

Подробно рассмотрим случай, когда брус работает только на изгиб (Mx¹0, Nz=Mz=My=Qx=Qy=0). В этой ситуации выражение (6.2) принимает вид:

. (6.3)

Согласно (6.3) для определения перемещения произвольной точки в произвольном направлении, последовательно необходимо выполнять следующее:

1.Построить эпюру моментов Мx от заданной системы внешних сил;

2.Исключая внешние силы и в точке, где необходимо определить перемещение по заданному направлению, прикладывается единичное усилие (сила-если требуется определить линейное перемещение; момент-если требуется определить угловое перемещение), и от действия единичного усилия строится эпюра моментов ;

3.По формуле Мора (6.3) вычисляется искомое перемещение.

При кручении круглого сечения возникают касательные напряжения, максимальные значения которых определяются по формуле:, где Wp-момент сопротивления при кручении.

Проверка прочности при расчетным сопротивлении R=180МПа. Расчетное напряжение по третьей теории прочности для плоского напряженного состояния определяется по формуле: .

Расчет стастически неопределимых систем методом сил Стержневые системы. Степень статической неопределимости.

Если принять EI=const, то перемещение в некоторой точке стержня определяется как интеграл от произведения двух функций моментов-Мx и . В общем виде интеграл Мора можно выразить следующей формулой: .(6.4).

Источник

Метод мора

Содержание:

Метод Максвелла — Мора представляет собой универсальный способ для определения линейных и угловых перемещений в любых плоских и пространственных системах.

  • Напомним основные этапы использования метода Максвелла -Мора.

При отыскании линейного перемещения к системе, освобожденной от заданных нагрузок, в направлении искомого перемещения (в заданной точке) прикладывается безразмерная единичная сила. Аналогично, при определении углового перемещения в сечении, поворот которого требуется найти, прикладывается пара сил (в плоскости искомого поворота) с моментом, равным безразмерной единице.

Строятся эпюры внутренних силовых факторов от заданной нагрузки и единичных воздействий.

Искомое перемещение определяется из выражения:

правую часть, которого называют интегралами Мора, где: искомое перемещение (линейное или угловое). Первый индекс указывает номер искомого перемещения второй индекс указывает причины, вызывающие деформации отдельных элементов системы и как следствие , перемещение (индекс указывает, что перемещение определяется от заданной нагрузки);

аналитические выражения продольной, поперечной сил и изгибающего момента соответственно от единичного и заданного воздействия (единичные и грузовые эпюры внутренних усилий);

жесткости поперечных сечений стержня соответственно на растяжение, сдвиг, изгиб;

коэффициент отражает неравномерность распределения касательных напряжений по поперечному сечению. Этот коэффициент зависит от формы сечения, например, для прямоугольника для круга

Направление единичного воздействия выбирается произвольно. Полученный по формуле (2.1) положительный результат указывает на то, что направление искомого перемещения совпадает с принятым направлением единичного воздействия, либо противоположно принятому направлению, если получен отрицательный результат.

В формуле (2.1) каждый интеграл четко выражает вклад соответствующей деформации в искомое перемещение. Обычно учитываются лишь основные виды деформации. В конструкциях работающих на изгиб учитывается влияние изгибающих моментов, а поперечными силами пренебрегают.

В комбинированных системах, где часть стержней работает на растяжение-сжатие, а часть — на изгиб, учитываются обе эти деформации. В фермах, где каждый стержень работает на растяжение -сжатие в формуле (2.1) остается только первый интеграл.

В случаях, когда ось бруса прямолинейна и жесткость поперечного сечения в пределах отдельных участков постоянна, интегралы

Мора, входящие в выражение (2.1) целесообразно вычислять, используя правило Верещагина или формулу Симпсона.

Возможно вам будут полезны данные страницы:

Пример решения задачи 2.2.

Определить прогиб конца консольной балки (рис. 2.2,а), учитывая лишь деформации, изгиба, жесткость поперечного сечения балки постоянна.

Решение:

Эпюра изгибающих моментов от заданной нагрузки показана на рис.

Построим единичную эпюру, для этой цели, сняв с балки заданную нагрузку, приложим к концу консоли (точка рис. 2.2 в),

вертикально направленную единичную силу , направление

единичной силы выбирается произвольно , например направим ее вниз, т.е. предполагаем , что точка переместится вниз по отношению продольной оси балки .

При заданном загружении (рис. 2.2,в), балка имеет один участок Единичный изгибающий момент для произвольного сечения участка будет равен

Подставляя в полученное уравнение прямой координаты начала и конца участка, построим единичную эпюру изгибающих моментов (рис. 2.2, г ).

Для определения прогиба точки надо «перемножить» эпюры от заданной нагрузки и от единичной силы. Проделаем это. Балка имеет два участка, На участке интеграл Мора вычислим по способу Верещагина.

Перемещение положительно, так как обе сопрягаемые эпюры, лежат по одну сторону от базы ( продольной оси бруса ).

На участке грузовая эпюра нелинейная и заранее неизвестно, где находится ее центр тяжести, использовать правило Верещагина на этом участке затруднительно. Для вычисления интеграла Мора на участке воспользуемся формулой Симпсона. Применяя ее, найдем:

Прогиб сечения равняется сумме интегралов Мора на участках

Знак плюс прогиба указывает на то, что сечение переместится по направлению единичной силы, т.е. вниз.

Пример решения задачи 2.3.

Определить угол поворота сечения двухопорной балки с консолью (рис. 2.3,а), учитывая лишь деформации изгиба, жесткость, балки постоянна.

Решение:

Эпюра изгибающих моментов от заданной нагрузки построена ранее в примере, ее вид показан (рис. 2.3, б).

Построим единичную эпюру, для этой цели, сняв с балки заданую нагрузку, приложим в сечении единичный момент направление единичного момента выбираем произвольно, например по ходу часовой стрелки (рис. 2.3,в).

Балка имеет три участка. Сопряжение эпюр проведем по участкам. На первом участке (участок для вычисления угла поворота, используем формулу Симпсона, так как эпюра на участке интегрирования нелинейная:

На втором участке (участок обе эпюры изгибающих моментов линейны.

Поэтому интеграл Мора на этом участке можно вычислить по формуле трапеций. Применяя ее, найдем:

Полученные выражения отрицательны потому, что знаки ординат «перемножаемых» эпюр противоположны. На третьем участке (участок интеграл Мора вычислим способом Верещагина:

Получен отрицательный результат потому, что эпюры и лежат по разные сторону от базы ( продольной оси бруса ). Угол поворота сечения равняется сумме интегралов Мора на трех участках ( на участках

Полученный знак минус указывает на то, что сечение поворачивается в направлении, противоположном направлению единичного момента.

Пример решения задачи 3.1.

Для консольной рамы, рис. 3.1,а, определить вертикальное и горизонтальное перемещение точки а также угол поворота узла жесткости стержней

Решение:

Поскольку при определении перемещений в рамах используется интеграл Мора, содержащий изгибающие моменты, построение эпюр не обязательно.

Построим грузовую эпюру изгибающих моментов, её вид показан на рис. 3.1,6.

Для определения вертикального и горизонтального перемещение точки в это сечение приложим единичные силы и

построим единичные эпюры, их вид показан на рисунках

«Перемножим» грузовую и единичные эпюры в пределах длины каждого участка (стержня).

Вертикальное перемещение точки

Горизонтальное перемещение точки

Анализируя, полученные выражения, устанавливаем, что точка перемещается вверх и влево.

Для определения угла поворота узла в этот узел приложим единичный момент и построим единичную эпюру изгибающих моментов, см. рис. 3.1,д.

«Перемножая» грузовую и единичную эпюры, определим угол поворота узла

Сечение поворачивается против хода часовой стрелки.

Пример решения задачи 3.2.

Для шарнирно опертой рамы со стержнями различной жесткости, рис. 3.2,а, определить горизонтальное перемещение точки и угол поворота сечения

Решение:

Определим опорные реакции от действия заданных нагрузок.

Строим грузовую эпюру изгибающих моментов (рис. 3.2,6).

Приложим в точке горизонтальную единичную силу а в сечение единичный момент и построим

единичные эпюры изгибающих моментов, см. рис. 3.2,в,г. «Перемножив» эти эпюры с грузовой эпюрой получим:

Точка перемещается вправо, а сечение поворачивается по ходу часовой стрелки.

На странице -> решение задач по сопротивлению материалов (сопромат) собраны решения задач и заданий с решёнными примерами по всем темам сопротивления материалов.

Присылайте задания в любое время дня и ночи в whatsapp.

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназачен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Источник

Читайте также:  Диплом при каспийского моря
Оцените статью