- Холодильник «Океан» КШ-160
- Устройство холодильника
- Холодильник «Океан-3» КШ-180
- Электрическая схема холодильника: устройство и принцип работы различных холодильников
- Принципиальная схема устройства холодильника
- Двухкамерные и двухкомпрессорные модели
- Трехкамерные холодильники и зона нулевой температуры
- Система No Frost и саморазморозка
- Умные холодильники с электронным управлением
- Выводы и полезное видео по теме
Холодильник «Океан» КШ-160
Тип холодильника | Компрессионный | Оттаивание испарителя холодильной камеры | Естественное |
Количество камер | 1 | ||
Общий объем, дм3 | 160 | Расход электроэнергии при температуре воздуха 20С, Вт | 40 |
Объем низкотемпературной камеры, дм3 | 14,9 | ||
Температура в низкотемпературной камере, С | -12 | Габаритные размеры (ВхШхГ), мм | 1205х560х620 |
Потребляемая мощность, Вт | 100 | Масса, кг | 68 |
Устройство холодильника
Бытовой напольный компрессионный холодильник ОКЕАН типа КШ-160 предназначен для кратковременного хранения скоропортящихся пищевых продуктов, приготовления в небольших количествах пищевого льда и охлаждения напитков и может быть использован в медицинских учреждениях для непродолжительного хранения лекарств, требующих умеренных температур.
Рис. 1 Внешний вид и устройство холодильника Океан.
Основными узлами холодильника являются: корпус-шкаф с холодильной камерой, холодильный агрегат, электрооборудование, соединительный шнур. Корпус холодильника выполнен в виде прямоугольного шкафа из листовой стали, покрытой белой эмалью.
Холодильная камера размещается внутри шкафа и изготовляется из листового ударопрочного полистирола. Она снабжена съемными полками, сосудами для мяса и фруктов. Закрывается камера дверью с резиновым уплотнителем специального профиля.
На внутренней панели двери имеются емкости и полочки для хранения расфасованных продуктов и напитков в бутылках. Для уменьшения теплопритока между корпусом шкафа и холодильной камерой проложена теплоизоляция. В холодильной камере имеется низкотемпературное отделение.
Холодильный агрегат, состоящий из компрессора, электродвигателя, испарителя, конденсатора и регулирующего устройства, представляет собой замкнутую сварную конструкцию, выполненную из цельнотянутых стальных труб. Агрегат заполнен фреоном-12.
Электрооборудование холодильника состоит из электродвигателя компрессора ЭД-23, пускозащитного реле РПЗ-23, предназначенного для запуска двигателя, автоматической защиты двигателя от токовой перегрузки, терморегулятора АРТ-2, поддерживающего в камере холодильника заданную температуру, патрона с электрической лампочкой и выключателя, предназначенных для освещения камеры.
Рис. 2 Электрическая схема холодильника Океан
Ш − штепсельная вилка; | Р − реле пускозащитное; |
ТР − датчик-реле температуры; | В − выключатель дверной; |
М − мотор-компрессор; | Л − лампа накаливания |
Холодильник «Океан-3» КШ-180
Тип холодильника | Компрессионный | Оттаивание испарителя холодильной камеры | Естественное |
Количество камер | 1 | ||
Общий объем, дм3 | 183 | Расход электроэнергии при температуре воздуха 25С, кВтч/сут | 1,31 |
Объем низкотемпературной камеры, дм3 | 25,2 | ||
Температура в низкотемпературной камере, С | -12 | Габаритные размеры (ВхШхГ), мм | 1175х560х600 |
Потребляемая мощность, Вт | 150 | Масса, кг | 65 |
Холодильник ОКЕАН-3 КШ-180 однокамерный, предназначен для хранения в охлажденном и замороженном состоянии пищевых продуктов, охлаждения напитков и приготовления пищевого льда.
Холодильник ОКЕАН-3 выполнен в виде напольного шкафа и имеет металлическую внутреннюю камеру. В верхней части холодильной камеры помещается испаритель, образующий низкотемпературное отделение холодильника. Он закрывается дверцей, обеспечивающей, стабильность температуры в низкотемпературном отделении, служит для замораживания и хранения пищевых продуктов и приготовления пищевого льда. Под низкотемпературным отделением находится поддон для отекания талой воды, которая удаляется за пределы холодильной камеры по трубопроводу в поддон для сбора талой воды, установленный под холодильником.
Охлаждение продуктов в холодильнике осуществляется герметичным холодильным агрегатом. Система холодильного агрегата заполнена хладагентом R12 и минеральным маслом ХФ 12-16.
Для удобства пользования в холодильнике имеются съемные полки, регулируемые по высоте, полки и ячейки на панели двери, форма для льда, сосуды для овощей и фруктов, освещение и ограничитель открывания двери.
В холодильном агрегате применен компрессор ХКВ5-1ЛБМ, допускается изготовление холодильников с компрессором XКВ6-1ЛВN и пускозащитным реле РЗ-1-1. Терморегулятором служит прибор Т-110-1. Холодильник снабжен прибором полуавтоматического управления оттаиванием ТО-11.
Рис. 3 Электрическая схема холодильника Океан-3:
М — компрессор; | В — дверной выключатель типа ДХК: |
Р — пускозащитное реле; | Л — лампа накаливания типа РН 220-15-1: |
Т1 — терморегулятор; | Ш — штепсельная вилка |
Т2 — прибор полуавтоматического управления оттаиванием; |
Статья подготовлена по материалам книги «Холодильники от А до Я» С. Л. Корякин-Черняк
Всего хорошего, пишите to Elremont © 2006
Источник
Электрическая схема холодильника: устройство и принцип работы различных холодильников
Холодильник не включается, и вам нужно выяснить причину поломки? Выбираете новый агрегат и хотите понять отличие в принципе работы разных моделей? Поможет в этом электрическая схема холодильника, в которой отражено взаимодействие основных его узлов.
Понимая принцип работы, вы сможете избежать обмана мастеров или починить холодильник самостоятельно, а также снизить риск поломок и увеличить рабочий ресурс аппарата. В этой статье рассмотрим схемы устройств различных типов: однокамерных и 2 – 3-камерных, с системой NoFrost и без неё, двухкомпрессорных, с механическим и электронным управлением.
Принципиальная схема устройства холодильника
Ещё 30 – 40 лет назад бытовые холодильники имели довольно простое строение: мотор-компрессор запускался и отключался 2 – 4 устройствами, о применении электронных плат управления и речи быть не могло.
Современные модели имеют множество дополнительных опций, но принцип работы в целом остается неизменным.
Терморегулятор – основной и единственный орган управления, которым пользователь может настроить работу старого холодильника, располагается обычно внутри холодильной камеры. Под силовым рычагом – крутящейся ручкой – скрыта пружина сильфона. Она сжимается, когда в камере холодно, тем самым размыкая электрическую цепь и отключая компрессор.
Как только температура поднимается, пружина распрямляется и вновь замыкает цепь. Ручка с указателями силы заморозки холодильника регулирует допустимый диапазон температур: максимальную, при которой компрессор запускается, и минимальную, при которой охлаждение приостанавливается.
Тепловое реле выполняет защитную функцию: контролирует температуру двигателя, поэтому расположено непосредственно возле него, часто совмещено с пусковым реле. При превышении допустимых значений, а это может быть 80 градусов и более, биметаллическая пластина в реле изгибается и прерывает контакт.
Мотор не получит питания до тех пор, пока не остынет. Это защищает как от поломки компрессора вследствие перегрева, так и от пожара в доме.
Мотор-компрессор имеет 2 обмотки: рабочую и стартовую. Напряжение на рабочую обмотку подается напрямую после всех предыдущих реле, но этого недостаточно для запуска. Когда напряжение на рабочей обмотке повышается, срабатывает пусковое реле. Оно дает импульс на стартовую обмотку, и ротор начинает вращаться. В результате поршень сжимает и проталкивает по системе фреон.
В целом цикл работы холодильника можно описать следующим образом:
- Включение в сеть. Температура в камере высокая, контакты терморегулятора замкнуты, мотор запускается.
- Фреон в компрессоре сжимается, его температура повышается.
- Хладагент выталкивается в змеевик конденсатора, расположенный за спиной или в поддоне холодильника. Там он остывает, отдает тепло воздуху и переходит в жидкое состояние.
- Через осушитель фреон попадает в тонкую капиллярную трубку.
- Попадая в испаритель, расположенный внутри камеры холодильника, холодильный агент резко расширяется благодаря увеличению диаметра трубок и переходу в газообразное состояние. Полученный газ имеет температуру ниже -15 градусов, поглощает тепло из камер холодильника.
- Немного нагретый фреон поступает в компрессор, и всё начинается заново.
- Через некоторое время температура внутри холодильника достигает заданных значений, контакты терморегулятора размыкаются, мотор и движение фреона останавливаются.
- Под воздействием температуры в помещении, от новых тёплых продуктов в камере и открывания двери, температура в камере повышается, терморегулятор замыкает контакты и начинается новый цикл охлаждения.
Эта схема в точности описывает работу старых однокамерных холодильников, в которых один испаритель.
Как правило, испаритель является корпусом морозилки в верхней части агрегата, не изолированный от холодильной камеры. Отличия в устройстве других моделей рассмотрим далее.
Двухкамерные и двухкомпрессорные модели
В большинстве доступных двухкамерных моделей общий фреоновый контур: после прохождения по испарителю морозильной камеры, хладагент направляется в основную камеру, а лишь оттуда – в компрессор.
Мотор выключается по сигналу термореле, расположенному в основной камере, общая схема электрики не отличается от однокамерных моделей.
В холодильниках No Frost эта система часто реализована одним общим испарителем, расположенным в перегородке между камерами. Разница температур регулируется турбинами и количеством воздуховодов, подробнее о таких моделях и их электрике поговорим далее.
Двухкомпрессорные модели позволяют независимо управлять температурой в каждой камере. По сути, это два отдельных, независимых устройства в одном корпусе – соответственно, и электрическая схема полностью продублирована: отдельный терморегулятор для каждой камеры, отдельное пускозащитное реле для каждого компрессора.
Независимая регулировка температуры в каждой камере возможна и с одним компрессором, при двухконтурной системе. Она может быть реализована различными способами: с преимуществом заморозки или абсолютно независимыми контурами.
В первом случае термостат холодильной камеры при достижении заданной температуры перекрывает клапан, и фреон начинает циркуляцию по малому кругу – только через морозилку. Компрессор останавливается при размыкании контактов термостата морозильной камеры.
Во втором варианте фреон имеет возможность циркуляции по любому одному из контуров или по обоим сразу, а регулируется этот процесс открытием и закрытием определенных клапанов по сигналу электронной платы управления.
Трехкамерные холодильники и зона нулевой температуры
Свежие мясо, птица и рыба недолго хранятся в основном отсеке холодильника, а при заморозке теряют часть полезных свойство, вкуса и аромата. Для них часто предусмотрен отдельный ящик с температурой, близкой к нулю, либо даже отдельная камера.
Наиболее точно поддерживается температура в зоне свежести при таких условиях:
- отдельная камера со своим испарителем и термистором, система циркуляции фреона двух– или трехконтурная. Вариант довольно дорогой и громоздкий, но и объёмы камеры значительные;
- изолированный отсек в основной камере холодильника с системой No Frost, снабженный дополнительными настраиваемыми вручную воздуховодами от испарителя и термометром. Точность температуры зависит от своевременности ручной настройки;
- аналогичное предыдущему исполнение, в котором воздушные заслонки управляются электронным блоком.
Альтернативный вариант – охлаждение от “плачущего” испарителя основной камеры.
Как видим, нулевая зона может быть реализована в холодильниках с различной схемой электрики, для обеспечения её работы могут быть дополнительно включены терморегулятор или термистор, а также расширена плата электронного управления.
Система No Frost и саморазморозка
Описанные выше холодильники имеют капельную систему разморозки. Это значит, что холодильной камере установлен “плачущий” испаритель: в период простоя компрессора иней на нём тает естественным образом, потому как температура в камере плюсовая.
Образовавшаяся вода стекает по специальным желобам через трубочку в контейнер, расположенный над мотором или возле него. Позже работающий мотор сильно нагревается, и вода испаряется. Морозилка при такой системе самостоятельно не оттаивает никогда, к тому же иней образуется не только на стенках камеры, но и на продуктах.
Холодильники No Frost не нуждаются в разморозке, инея в их камерах, даже в морозилке, вы не увидите. Характерная особенность таких моделей – наличие вентилятора, который распределяет холодный воздух от испарителя по камерам.
Сам охлаждающий змеевик в таких моделях выглядит не как привычная сплошная металлическая пластина, а как автомобильный радиатор или змеевик конденсатора сзади старых холодильников.
В общей схеме работы холодильника новые элементы ведут себя следующим образом:
- вентилятор или турбина запускается вместе с компрессором и равномерно распределяет холодный воздух по камерам;
- когда термореле размыкает контакты, питающие двигатель в связи с достижением заданной температуры, одновременно отключается и вентилятор;
- раз в 8 – 16 часов термореле включает нагревательный элемент. Это электрический мат или провод, нагревающий змеевик испарителя для удаления с него инея. Теплый воздух не попадает в камеры холодильника, поскольку испаритель скрыт, а вентилятор отключен;
- когда весь иней оттаял, переключатель компенсации температуры отключает подогрев;
- дополнительно термостат может управлять заслонкой, регулирующей подачу холодного воздуха в основную камеру по каналам.
Разморозка таких холодильников похожа на “плачущий” испаритель лишь в одном: образовавшаяся вода также стекает по каналам в емкость около мотора.
Описанная выше схема – наиболее примитивная. Большинство современных моделей управляются централизованно, с электронной платы.
Основной недостаток холодильников No Frost – пересыхание продуктов из-за постоянной циркуляции воздуха. Всё приходится хранить в контейнерах с плотными крышками или заворачивать в плёнку.
Оригинальное решение проблемы предлагает Electrolux в системе Frost Free. В этих агрегатах морозилка работает по системе No Frost, а в камере с плюсовой температурой установлен классический, “плачущий” испаритель. Электрическая схема в целом идентична стандартным системам “без инея”.
Умные холодильники с электронным управлением
Классические терморегуляторы, с механической поворотной ручкой и сильфоном внутри, в современных холодильниках встречаются всё реже. Они уступают место электронным платам, способным управлять постоянно увеличивающимся разнообразием режимов работы и дополнительных опций холодильника.
Функцию определения температуры вместо сильфона выполняют датчики – термисторы. Они значительно более точные и компактные, часто устанавливаются не только в каждой камере холодильника, но и на корпусе испарителя, в генераторе льда и снаружи холодильника.
Управляющая электроника многих холодильников выполнена на двух платах. Одну можно назвать пользовательской: она служит для ввода настроек и отображения текущего состояния. Вторая – системная, через микропроцессор управляет всеми устройствами холодильника для реализации заданной программы.
Отдельный электронный модуль позволяет использовать в холодильниках инверторный двигатель.
Такие моторы не чередуют циклы работы на максимальной мощности и простоя, как обычные, а лишь меняют количество оборотов в минуту, в зависимости от необходимой мощности. В результате температура в камерах холодильника постоянная, потребление электроэнергии снижается, а рабочий ресурс компрессора – повышается.
Использование электронных плат управления невероятно расширяет функциональные возможности холодильников.
Современные модели могут быть оснащены:
- панелью управления с дисплеем или без него, с возможностью выбора и установки режима работы;
- множеством датчиков температуры NTC;
- вентиляторами FAN;
- дополнительными электромоторами М – например, для измельчения льдинок в генераторе льда;
- нагревателями HEATER для систем оттайки, домашнего бара и пр.;
- электромагнитными клапанами VALVE – например, в кулере;
- выключателями S/W для контроля закрытия дверцы, включения дополнительных устройств;
- Wi-Fi адаптером и возможностью дистанционного управления.
Электрические схемы подобных устройств также поддаются ремонту: даже в самой сложной системе нередко причиной неисправности становится вышедший из строя датчик температуры или подобная мелочь.
Если же холодильник “глючит” и отказывается корректно выполнять заданную программу, либо вообще не включается, вероятнее всего проблема касается платы или компрессора, лучше доверить ремонт специалисту.
Выводы и полезное видео по теме
О том, как устроен и работает компрессор бытового холодильника, наглядно и подробно рассказывают в этом видео:
А здесь на стенде собирают и подключают все элементы электрической цепи холодильника No Frost:
Всё разнообразие современных бытовых холодильников сводится к одной принципиальной электрической схеме, усовершенствованной и дополненной различными компонентам. Как бы ни отличался Indesit последней модели от старенького Минска, производят холод они по одинаковому принципу.
Электрические цепи бюджетных и старых холодильников вполне поддаются домашнему ремонту по типичной схеме, электронные же платы управления различаются для каждой серии. Но даже они имеют схожее общее строение.
А какому холодильнику отдали вы свое предпочтение? Смогли узнать что-то новое, интересное и полезное из этой статьи? Делитесь своим мнением, опытом и знаниями в комментариях ниже.
Источник