- Как найти глубину моря формула
- Вы делаете это неправильно: расчет глубины
- Приветствую вас, глубокоуважаемые!
- Способ 1 — По давлению столба жидкости
- Как влияет атмосферное давление?
- Что с ускорением свободного падения?
- А как влияет плотность воды?
- Матчасть
- Средний уровень моря. Нуль глубин
- ГЛАВА 13. КОЛЕБАНИЯ УРОВНЯ ОКЕАНОВ И МОРЕЙ
- § 49. Средний уровень. Нуль глубин
Как найти глубину моря формула
Азбука физики
Научные игрушки
Простые опыты
Этюды об ученых
Решение задач
Презентации
Книги по физике
Умные книжки
Есть вопросик?
Его величество.
Музеи науки.
Достижения.
Викторина по физике
Физика в кадре
Учителю
Читатели пишут
Эхолот – технический прибор, в основе которого лежит использование часов для измерения глубины океана. Это принцип гидролокации. До изобретения эхолота малые глубины до 4 м измеряли футштоком, т.е. шестом, размеченным в футах, а большие до 500 м – лотом, т.е. гирей, укрепленной на длинном тросе. С поверхности океана в глубину посылается звуковой импульс и принимается эхо, отраженное от дна океана. Часы измеряют интервал времени от отправления импульса до возвращения эха. Глубина определяется по запаздыванию эха: где v – скорость звука в морской воде, t – время запаздывания, а двойка в знаменателе учитывает путь туда и обратно, пройденный сигналом. Точность измерений зависит от того, насколько точно известна скорость звуковых волн в воде и с какой точностью измеряется запаздывание сигнала. Обычный секундомер позволяет измерять время с точностью до десятых долей секунды (т.е. глубину с точностью до сотни метров ). Для большей точности используются электронные секундомеры. Источник: по материалам книги П.Маковецкого «Смотри в корень» Есть еще вопросы по физике? — Отвечаем! Вернуться к списку вопросов ВЕНЕРА НА ЛИКЕ СОЛНЦА Физику на заметку. «Я говорю: увидел Венеру, как родинку на лике Солнца». Эти строки написаны на пергаменте, возраст которого более тысячи лет! Автор — ученый-энциклопедист Древнего Востока аль-Фараби. Не ошибался ли средневековый астроном? Ведь чтобы увидеть прохождение Венеры по диску Солнца, ему нужно было сначала с высокой точностью рассчитать движение планет, определить день и час затмения. Вычисления современных специалистов показали, что в 910 году нашей эры с территории современного Казахстана действительно можно было наблюдать «родинку на лике Солнца». Это выражение приходит на ум, когда знакомишься с сообщением о том, что недавно налажен выпуск интегральных микросхем, в которых вместо полупроводниковой подложки используются кристаллы сапфира. Такие микросхемы по стоимости во много раз выше традиционных. Источник Вы делаете это неправильно: расчет глубиныПриветствую вас, глубокоуважаемые!Что если я скажу, что глубина, что бы вы под ней не подразумевали, является одной из самых сложных для точного измерения величин? На какой глубине плывет подводная лодка? Какая глубина марианской впадины? На какой глубине лежит Титаник? Если вам не повезет с параметрами, то на первом километре глубины, вы можете ошибиться примерно на 30-40 метров и на 200-300 метров на 6-ом километре, используя датчик давления. Если вы предпочитаете эхолот, то при неудачном стечении обстоятельств, которые вы не учли, ошибка на первом километре составит метров 100, а на 6-ом — целый километр. Конечно, можно еще использовать длинную веревку… Но там, как известно, свои подводные камни. Как такое могло случиться и как делать правильно я расскажу под катом. В довесок к статье есть Open-source библиотека на C#/C/Rust/Matlab/Octave/JavaScript и пара онлайн-калькуляторов для демонстрации. Статья будет полезна разработчикам подводной техники, число которых за последние лет пять выросло в разы. Итак, для начала сразу оговоримся, что глубиной часто называют две разных величины:
В первом случае — это глубина погружения, а во втором — глубина места. Есть ровно два с половиной фундаментальных способа изменения этих величин, как я уже упомянул:
С веревкой все понятно, а с остальными двумя давайте разберемся. Сегодня разберем: Способ 1 — По давлению столба жидкости Из нее легко посчитать высоту столба жидкости (т.е. глубину в нашем случае), не забывая про атмосферное давление На «100» умножаем, если хотим получить глубину в метрах, измеряем давление в миллибарах, плотность воды в кг/м^3, а ускорение свободного падения в м/c^2. Давайте абстрагируемся от точности конкретных приборов, пусть даже они у нас суперточные. Как влияет атмосферное давление?Давление у поверхности моря может варьироваться в пределах 641-816 мм. рт. ст., или, тоже самое в миллибарах: от 855 до 1087. Если просто взять за Что с ускорением свободного падения?Боюсь показаться Кэпом, но все же напомню, что земля у нас Если не крохоборничать и не учитывать гравитационные аномалии из-за разной плотности земных пород, гор, впадин, изменения скорости вращения земли от сброшенной земными деревьями листвы и перемещениями соков по их стволам, то нас вполне устроит стандартная зависимость ускорения свободного падения от георафической широты. Т.н WGS-84 Gravity formula. Согласно этой формуле, ускорение свободного падения меняется от 9.7803 м/с2 на экваторе (0° градусов широты) до 9.8322 м/с2 на полюсах (90/-90° широты). Допустим, мы возьмем стандартное значение ускорения свободного падения 9.80665 м/с2, на сколько мы ошибемся в худшем случае? Это иллюстрируетя картинкой ниже. На ней синий график показывает ошибку определения глубины на экваторе, если мы будем использовать стандартное значение То есть, если мы подставим в формулу стандартное значение А как влияет плотность воды?Самым нехорошим образом. Если два первых компонента погрешности учесть достаточно просто, да и вклад их весьма скромен, то с плотностью воды история более замысловатая. Дело в том, что плотность воды в упрощенном случае есть функция температуры, давления и солености. То есть мало измерять давление, атмосферное давление, учитывать географическую широту места. Нужно еще знать температуру и соленость воды. Для определения плотности морской воды в (разумном) диапазоне условий на практике наиболее широко применяется формула из работы Чена и Миллеро (Да, ЮНЕСКО занимается еще и этим!) Допустим, мы измерили и температуру и соленость, но остается сжимаемость воды — изменение плотности с давлением (т.е. с глубиной), и чтобы определить высоту столба жидкости нужно просуммировать высоты элементарных столбиков, на которых давление изменяется на какую-то малую величину N — это число интервалов разбиения давления от Плотность зависит от давления практически линейно, и считать такую сумму из-за учета одной лишь сжимаемости смысла нет, но я привел здесь эту формулу не просто так. Сам факт, что плотность зависит от трех параметров — это еще пол беды. Сложность кроется в том, что все эти параметры могут сильно меняться с глубиной. В этом случае принято говорить о профиле температуры и солености. Вот так, к примеру, выглядит профиль из Арктики: Вот так с северной части тихого океана: А вот так, для сравнения — с юга атлантики: Например, если представить, что мы погружается в северной части тихого океана (39°СШ,152°ВД) учитываем атмосферное давление и географическую широту места и сжимаемость воды, а наш датчик давления показывает 100 Бар ( 1000 м), а температуру и соленость мы берем в точке измерения, но не учитываем профиль, мы ошибемся с глубиной на 2 метра. Я специально запилил онлайн-калькулятор и добавил три тестовых профиля (их можно переключать кнопками), чтобы каждый мог сам попробовать. Если теперь просто переключить профиль на «южноатлантический» и попробовать пересчитать, то мы увидим, что разница выросла до 6-и метров. Напомню: все, даже сжимаемость воды мы уже учли! Ошибка связана только с наличием профиля — слоев разной температуры и солености в толще воды. Естественно, все меняется и со сменой времен года и со сменой времени суток. Летом (в северном полушарии, зимой — в южном) верхний слой прогревается, а зимой — остывает. Шторма перемешивают воду, дожди смывают грязь с суши и реками уносят в моря, таят снега и ледники. Это я к тому, что нельзя один раз перемерить и выбить в граните все профили температуры и солености для всех морей и океанов — все течет, все меняется. И если вдруг вы собрались погружаться на ощутимые глубины и у вас нет температурного профиля — я не поверю в ваш рекорд ) МатчастьКак я упомянул в начале статьи, все необходимое для расчета глубины я собрал в библиотеку и положил на GitHub. Она в том числе переведена на JavaScript, а в качестве интерактивного примера ее использования привожу онлайн-калькулятор. Благодарю за внимание, буду искренне благодарен за конструктивную критику, сообщения об ошибках, пожелания и предложения. В следующей статье разберу второй способ определения глубины — по эхолокации. Только зарегистрированные пользователи могут участвовать в опросе. Войдите, пожалуйста. Источник Средний уровень моря. Нуль глубинГЛАВА 13. КОЛЕБАНИЯ УРОВНЯ ОКЕАНОВ И МОРЕЙ§ 49. Средний уровень. Нуль глубинК основным характеристикам уровня, необходимым при изучении режима и представляющим практический интерес, относятся средние уровни за различные периоды времени и экстремальные значения. Кроме средних уровней — суточного, месячного, годового и многолетнего, большой интерес представляют экстремальные его величины — максимальный, минимальный, наибольшее возможное отклонение от среднего уровня, продолжительность стояния на различной высоте и др. Наблюдения за колебаниями уровня моряНаблюдения за колебаниями уровня моря проводятся на водомерных постах, сооружаемых на берегах материков, островов, а в полярных морях — на ледяном покрове. Устройство таких постов и способы наблюдений в принципе ничем не отличаются от устройства и наблюдений на водомерных постах на реках и озерах. Для непрерывной автоматической регистрации колебаний уровня используются самописцы-мареографы. Расчет различных характеристик уровня осуществляется при помощи статистических методов. Средние суточные, из которых выводится средний месячный уровень, используются для расчета средних годовых его значений. Средний годовой уровень моряСредний годовой уровень не остается постоянным, хотя колебания его, как правило, сравнительно невелики (рис. 21). В морях с затрудненным водообменом с океаном, таких, как Балтийское, Черное, Азовское и др., средний годовой уровень отклоняется от многолетнего больше, чем на берегах океана. В закрытых морях колебания среднего годового уровня могут быть значительными. где Х0 — средний многолетний уровень; Хi — средние годовые уровни; п — число лет наблюдений, т. е. длина ряда. Для морей, где приливные колебания значительны, для определения среднего многолетнего уровня достаточен 19-летний период, в течение которого проявляются все важнейшие неравенства в явлении приливов. Для морей, где величина приливных колебаний менее 50 см, необходимо особо определять продолжительность ряда наблюдений. Она зависит от особенностей непериодических колебаний и заданной точности. А. И. Дуваниным предложена простая формула для определения продолжительности наблюдений где п — необходимое число лет наблюдений; R — заданная точность; Xмакс = Х0 — Xi — наибольшее наблюденное отклонение среднего годового уровня от многолетнего в одном из пунктов моря. Точные нивелировки, произведенные для связи средних уровней моря в различных пунктах наблюдений, показали, что эти уровни отличаются друг от друга на довольно значительные величины. Уровни у западных берегов материков выше, чем у восточных, и понижаются с севера на юг. Так, средний уровень Тихого океана у берегов США на 0,5 м выше, чем уровень Атлантического океана на той же широте; Уровень Белого моря у Архангельска на 24 см выше уровня Балтийского моря у Кронштадта. Нуль глубинДля того чтобы сделать сравнимыми результаты измерений глубин, произведенных при различных положениях уровенной поверхности, их приводят к одному определенному уровню, называемому нулем глубин. В морях, где приливные колебания уровня невелики, за нуль глубин принимается средний многолетний уровень. Исключением является Каспийское море, для которого за нуль глубин принят условный горизонт. На Балтийском море за нуль глубин принята уровенная поверхность, проходящая через нуль Кронштадтского футштока, лежащего на несколько сантиметров ниже среднего многолетнего уровня у Кронштадта. В морях, где приливные колебания уровней значительны, т. е. средняя величина прилива более 50 см, за нуль глубин принимаются уровни, связанные с наинизшим положением уровенной поверхности моря. Это так называемый теоретический нуль глубин (ТНГ) — наиболее низкий уровень, возможный по астрономическим причинам. Он вычисляется различными способами по гармоническим постоянным (см. стр. 143), которые определены для многих портов Мирового океана. Источник: Общая гидрология, Гидрометеоиздат, Ленинград, 1973 Источник |