Метод мора его сущность

Метод Мора

Этот метод позволяет определить содержание хлоридов или бромидов:

Ag + + Сl — = AgCl↓; Ag + + Br — = AgBr↓.

Рабочим раствором в методе Мора является раствор ни­трата серебра AgNO3. Исходным веществом для определе­ния молярной концентрации эквивалента раствора AgNO3 является хлорид натрия NaCl или хлорид калия КСl. Для определения конца титрования используется индикатор хромат калия К2СrO4, который с нитратом серебра образу­ет кирпично-красный осадок хромата серебра Ag2CrО4:

При титровании хлоридов и бромидов образуется бе­лый осадок AgCl или желтовато-белый осадок AgBr. Ког­да ионы Сl — или Вr — будут практически полностью в осад­ке, то в растворе появляется избыток AgNO3, взаимодействующий с К2СrО4 с образованием кирпично-красного осадка Ag2CrO4. Осадки галогенидов серебра окрашивают­ся при этом в розовый цвет, по появлению которого судят о том, что реакция между галогенид-ионами и ионами Ag + за­кончилась. Такая последовательность образования осадков объясняется тем, что растворимость AgCl (1,25 • 10 -5 моль/л) и растворимость AgBr (7,94 • 10 -7 моль/л) меньше раствори­мости Ag2CrO4 (1 • 10 -4 моль/л). Поэтому при титровании из растворов прежде всего выпадают осадки галогенидов серебра и только после полного осаждения ионов Сl — и Вr — начинает образовываться осадок хромата серебра.

Йодйд-ионы невозможно определить методом Мора, так как выпадающий осадок йодида серебра Agl сильно адсорбирует К2СrO4, вследствие чего осадок окрашивает­ся до точки эквивалентности.

Применение метода Мора ограничено, так как точные результаты можно получить только в нейтральной среде. В кислой среде К2СrO4 переходит в К2Сr2O7, не обладаю­щий свойствами индикатора в результате высокой раство­римости Ag2Cr2O7. В присутствии щелочей метод Мора также не применяется, так как в таких растворах образу­ется AgOH, распадающийся на Ag2O и Н2О:

В присутствии аммиака и его солей осадки AgCl и Ag2CrO4 растворяются с образованием комплексных со­единений. Этот метод не применяется также в присутст­вии ионов Ва 2+ , Pb 2+ , Bi 3+ , так как эти ионы образуют с хромат-ионами осадки.

Титрование по методу Мора следует проводить при комнатной температуре, так как с повышением темпера­туры увеличивается константа растворимости Ag2CrO4; вследствие этого уменьшается чувствительность индика­тора к иону Ag + .

При определении солей галогенов (рабочий раствор AgNO3) или солей серебра (рабочий раствор NaCl) реко­мендуется придерживаться следующего порядка титрова­ния: всегда приливать из бюретки раствор соли серебра к раствору соли галогена. Только при такой последователь­ности титрования получается резкое изменение окраски индикатора в конце титрования.

Рабочим раствором в методе Мора является 0,05000 н. или 0,1000 н. раствор AgNO3. Молярная масса эквивалента нит­рата серебра равна его молярной массе, т.е. 169,89 г/моль.

Следовательно, для приготовления 1 л 0,05 н. раствора на­до взять 8,5 г нитрата серебра. Эту навеску взвешивают на технических весах. Точную концентрацию приготовлен­ного раствора AgNO3 устанавливают по стандартному рас­твору хлорида натрия. Приготовленный раствор AgNO3 изменяется при длительном хранении. Под влиянием све­та разложение ускоряется. Вследствие этого раствор хра­нят в склянках из оранжевого стекла или в посуде, обер­нутой черной бумагой. С течением времени концентрацию раствора AgNO3 проверяют.

Стандартный раствор хлорида натрия получают раство­рением точно известного количества химически чистого хлорида натрия в определенном объеме воды. Если химиче­ски чистого хлорида натрия нет, то его получают перекрис­таллизацией поваренной соли из воды. Для приготовления 0,05000 н. раствора NaCl взвешивают на аналитических ве­сах 0,5844 г NaCl и количественно переносят в мерную кол­бу на 200 мл. Растворяют навеску в дистиллированной во­де, доводят водой до метки и тщательно перемешивают.

Метод Мора применяется при анализе пищевых про­дуктов (колбаса, соленая рыба, сливочное масло), где оп­ределяется количество поваренной соли. Для определения хлоридов в воде также используется этот метод. Мето­дом Мора анализируются лекарственные препараты — КСl, KBr, NaCl, NaBr и др.

Лабораторная работа 1. Стандартизация рабочего рас­твора нитрата серебра по 0,05000 н. раствору хлорида на­трия.

Цель работы. Получить навыки стандартизации рабо­чего раствора по первичному стандарту.

Оборудование. Бюретка вместимостью 25 мл, пипетка Мора, колбы для титрования.

Реактивы. Рабочий раствор AgNO3, стандартный рас­твор 0,05000 н. NaCl, индикатор хромат калия с массовой долей его 5 %.

Выполнение работы. В три колбы для титрования с по­мощью пипетки Мора вносят по 10 мл 0,05000 н. раствора хлорида натрия и добавляют по 0,5 мл раствора индикато­ра. При постоянном перемешивании из бюретки медленно приливают раствор нитрата серебра до появления неисчезающего красного окрашивания. Результаты титрования записывают в таблицу (см. гл. 20.6.).

Обработка результатов эксперимента. Находят средний объем раствора AgNO3, затраченного на титрование раствора NaCl. Рассчитывают молярную концентрацию эквивалента раствора AgNO3 из соотношения V(AgNO3) • C(AgNO3) = V(NaCl) • C(NaCl). Рассчитывают титр рабочего раствора AgNO3 по формуле (19.10). Формулируют вывод, характе­ризующий результат проведенного титрования.

Лабораторная работа 2.Определение содержания хло­рида натрия в растворе.

Цель работы.Закрепить навыки титрования по методу Мора.

ОборудованиеСм. лабораторную работу 1.

Реактивы.Раствор хлорида натрия, предложенный преподавателем, рабочий раствор AgNO3 с молярной кон­центрацией эквивалента 0,05000 моль/л, индикатор хро­мат калия с массовой долей его 0,5 %.

Выполнение работы.Раствор хлорида натрия помеща­ют в мерную колбу на 100 мл, добавляют воды до метки и перемешивают. В три колбы для титрования вносят с по­мощью пипетки Мора по 10 мл полученного раствора, до­бавляют по 0,5 мл раствора индикатора. Титруют раство­ром AgNO3 до появления неисчезающего красного окра­шивания.

Обработка результатов эксперимента.Рассчитывают концентрацию раствора NaCl в моль/л, используя закон эквивалентов: V(NaCl) • C(NaCl) = V(AgNO3) • C(AgNO3). За­тем рассчитывают титр раствора NaCl по формуле (19.10). Умножая титр раствора NaCl на объем колбы (100 мл), уз­нают массу хлорида натрия в растворе, предложенном преподавателем для анализа.

Делают вывод о полученных результатах.

Дата добавления: 2014-11-13 ; просмотров: 34 ; Нарушение авторских прав

Источник

Метод Мора

Лекция 2.3. определение перемещений в упругих системах. Метод Мора. Способ Верещагина.

Метод Мора

Рассмотрим произвольную плоскую стержневую систему, нагруженную заданными силами (рис. 2.3.1). Усилия в произвольном сечении обозначим через , , . Пусть требуется определить перемещение любой точки системы по направлению .

Введем вспомогательное состояние, представляющее собой заданную систему, нагруженную лишь одной единичной силой , приложенной в той же точке и по тому же направлению, по которому надлежит разыскать перемещение . Усилия в произвольном сечении вспомогательного состояния, вызванные действием единичной силы , обозначим через , , .

Применим начало возможных перемещений для вспомогательного состояния, принимая в качестве возможных действительные перемещения заданной системы.

(2.3.1)

(2.3.2)

Полученное выражение является общей формулой для упругого перемещения плоской стержневой системы.

В общем действии сил формула для перемещения содержит шесть слагаемых:

(2.3.3)

Формулы (2.3.2) и (2.3.3) впервые были получены Мором. Определение перемещение по этим формулам часто называют методом Мора.

В большинстве случаев при определении перемещений в балках, рамах и арках можно пренебречь влиянием продольных деформаций сдвига, учитывая лишь перемещения, которые вызываются изгибом и кручением. Тогда формула (2.3.2) для плоской системы принимает вид

. (2.3.4)

При пространственном нагружении, согласно (2.3.3),

(2.3.5)

Если рассчитываются шарнирные фермы, образованные прямыми стержнями, то в формуле Мора сохраняется только слагаемое, содержащее продольную силу:

(2.3.6)

Формула (2.3.6) носит название формулы Максвелла.

Рассмотрим пример определения перемещений по методу Мора. Пусть требуется определить прогиб посредине пролета и угол поворота на опоре шарнирно опертой балки постоянного поперечного сечения (рис 2.3.2, а), нагруженной равномерно распределенной нагрузкой интенсивностью . При определении перемещений придерживаются следующего порядка:

1. Строят вспомогательную систему, которую нагружают единичной нагрузкой в точке, где требуется определить перемещение. Определяя линейные перемещения, в заданном направлении прикладывают единичную силу, определяя угловые перемещения, — единичный момент.

В нашем случае, для определения прогиба посредине балки строим вспомогательную систему (рис. 2.3.2, б) с сосредоточенной силой , приложенной посредине балки, а для определения угла поворота опорного сечения — вспомогательную систему (рис. 2.3.2, в) с моментом , приложенным в опорном сечении.

2. Для каждого участка системы выписывают выражения силовых факторов в произвольном сечении заданной ( , , ) и вспомогательной ( , , ) систем.

В произвольном сечении первого участка балки:

В произвольном сечении второго участка

3. Вычисляют интегралы Мора (по участкам в пределах всей системы).

Прогиб посредине балки

Угол поворота опорного сечения

4. Если вычисленное перемещение имеет положительный знак, то это означает, что его направление совпадает с направлением единичной силы. Отрицательный знак указывает на то, что действительное направление искомого перемещения противоположно направлению единичной силы.

Поскольку и получились положительными, их направления соответствуют единичным нагрузкам.

Источник

Читайте также:  Особенности обитателей глубин моря
Оцените статью
Читайте также:
  1. Amp; Методичні вказівки
  2. Amp; Методичні вказівки
  3. Amp; Методичні вказівки
  4. Amp; Методичні вказівки
  5. Amp; Методичні вказівки
  6. Amp; Методичні вказівки
  7. Amp; Методичні вказівки
  8. B. Искусственная вентиляция легких. Методики проведения искусственной вентиляции легких
  9. Cтруктуры внешней памяти, методы организации индексов
  10. FDDI. Архитектура сети, метод доступа, стек протоколов.