Простейшие органические соединения первичный океан

Тема 7. Органическое вещество морских вод. Первичная продукция

Формы нахождения органического вещества

Природные воды почти всегда содержат, кроме минеральных веществ и растворенных газов, органиче­ское вещество. Органические соединения, несмотря на разнообразие их форм, состоят в основном из углерода, кислорода и водорода, (98,5 % по массе). Кроме того, в присутствуют азот, фосфор, сера, калий, кальций и многие другие элементы. Количество известных органических соединений составляет почти 27 млн

Под органическим веществом природных вод понимают совокупность различных форм органических веществ: истинно-растворенные (размер частиц 3 км 3 реки ежегодно поставляют в океан около 200 млн. тСорг.

Автохтонное органическое вещество

Аллохтонное органическое вещество создается в результате первичной продукции морских организмов. Первичная продукция – это количество органического вещества, синтезированного из минеральных веществ в результате фотосинтеза автотрофными организмами. Мерой первичной продукции служит скорость образования органического вещества, выраженная в единицах массы или энергии на единицу пространства (в м 3 или под м 2 водоема). Преобладающая часть первичной продукции в водных экосистемах создается планктонными водорослями (фитопланктоном). Она и поступающие в водоем аллохтонные органические вещества составляют основу всех последующих этапов продукционного процесса в пищевых цепях. Первичная продукция отражает все органическое вещество, образуемое в результате фотосинтеза автотрофными организмами, и является исходным фондом для всех последующих процессов трансформации в водоеме.

Значительная часть первичной продукции вновь минерализуется в ходе жизнедеятельности планктонного сообщества (на дыхание фитопланктона, потребляется и разлагается бактериями и зоопланктоном) составляя величину деструкции органического вещество. Распад органического вещества в природных водах называется процессом минерализации. Он имеет важное значение не только для разложения остатков организмов и продуктов их жизнедеятельно­сти в водоеме, но и для возврата (регенерации) в воду ряда элемен­тов (С, Р, N и др.), необходимых для питания гидробионтов.

Читайте также:  Тест океаны земли 4 класс гармония с ответами

Главным продуцентом органического вещества в океане является фитопланктон (таблица).

Таблица. Биомасса и продукция различных групп организмов

в Мировом океане, млрд. т в сыром весе (Богоров, 1974)

Наименование Биомасса (Б) Продукция (П) Коэффициент вос- производства (П/Б)
Продуценты:
— фитопланктон 1,5 550,0 366,0
— фитобентос 0,2 0,2 1,0
Консументы:
— зоопланктон 21,5 53,0 2,5
— зообентос 10,0 3,0 0,3
— нектон 1,0 0,2 0,2
Редуценты:
— бактерии 0,07 70,0 1000,0

Основная роль в создании первичной продукции в Мировом океане принадлежит диатомовым, перидиниевым и сине-зеленым водорослям. При этом на долю диатомовых приходится 90-98% в полярных и умеренных широтах и 50-60% в субтропиках и тропиках. В среднем по всему Мировому океану в общем балансе первичной продукции и биомассе фитопланктона на долю диатомовых приходится 77%, перидиниевых 22% и сине-зеленых – 1%.

Величина и распределение первичной продукции фитопланктона зависят от освещенности, концентрации биогенных элементов и их поступления в верхний слой. Исследователи по-разному оценивают продукцию фитопланктона в Мировом океане – в среднем оценки составляют около 20 млрд. т. Сорг. (около 400-550 млрд. т сырой органической массы).

Распределение первичной продукции в Мировом океане в общих чертах подчинено широтной и циркумконтинетальной зональности близки к распределению численности и биомассы фитопланктона. В связи с тем, что продуктивность фитопланктона в первую очередь связана с обеспеченностью его биогенными элементами, общая картина распределения первичной продукции во многом совпадает с распределением биогенов . Максимальные величины первичной продукции (более 2 г С/м2 в день) характерны для зон аппеллинга, минимальные (менее 500-750 мг С/м2 в день) — приурочены к центрам океанских антициклонических круговоротов. Высокой продуктивностью (не менее 1,0 — 1,5 г С/м2 в день) отличаются антарктические воды. В прибрежных областях и за их пределами более высокая первичная продукция наблюдается главным образом в умеренных, субполярных и экваториальных широтах. Главной, наиболее резко выраженной ее чертой является циркумконтинентальный характер локализации, проявляющийся в значительном увеличении продукции при переходе от открытых к прибрежным районам океана.

Высокий уровень первичной продукции фитопланктона обеспечивает обилие гетеротрофных организмов в этих районах и максимальное содержание взвешенного органического вещества, а также органического углерода в толще донных отложений.

Широтная зональность в продуцировании органического вещества проявляется в существовании трех зон повышенной биопродуктивности (две умеренные зоны и экваториальная), разделенных тропическими областями общего погружения вод и низкой биопродуктивности. Эти тропические зоны по эффективности утилизации солнечной энергии и продуктивности лишь немногим выше пустынь на суше.

Продуктивность вод большинства внутренних, средиземных и окраинных морей в среднем значительно выше продуктивности вод океанов.

Другим первичным источником органического вещества является фитобентос. В узкой прибрежной полосе (до глубин 60-120 м, чаще до 20-40 м) живет около 8000 видов водорослей, около 100 видов цветковых растений (морских трав). Фитобентос ежегодно создает 1,5 млрд. т сырой органической массы, что примерно соответствует 110 млн. тСорг.

Таким образом, ежегодная чистая продукция Сорг в океане оценивается в 20 млрд. т,а поступление с суши — в 1 млрд. т. В сумме это составля­ет 21 млрд. т Сорг (около 42 млрд. торганического вещества), или около 2*10 17 ккал.Аллохтонная компонента составляет около 5% от общей суммыпоступлений.

Значение изучения первичной продукции при исследовании водных экосистем

Необходимость количественной характеристики органических веществ, синтезируемых при фотосинтезе планктона, отчетливо выступает при решении многих вопросов и практики гидробиологии. Результаты продукции органического вещества гидробионтами, в частности фитопланктоном, оцениваются как особенность естественного круговорота веществ в экосистеме. Биотический круговорот в водоеме представляет собой процесс, включающий в себя использование материальных и энергетических ресурсов водоема при создании первичной продукции и многоступенчатую последующую утилизацию вещества и энергии. Определение первичной продукции планктона широко используется для оценки биологической продуктивности водоемов, для выяснения эффективности утилизации вещества и энергии гетеротрофными организмами на всех этапах продукционного процесса. Данные по первичной продукции послужили той «главной осью», вокруг которой стала строиться современная система трофической классификации водоемов.

Особое внимание привлекают водные объекты, находящиеся под сильным антропогенным воздействием. Усиление антропогенного влияния на водные объекты на протяжении последних пятидесяти лет привело к необходимости мониторинга и поисков объективных критериев, комплексных показателей качества вод. Наиболее важным системным показателем служит перестройка структуры и метаболизма биоценозов. Это непосредственно отражается на величине первичной продукции, на соотношении между первичной продукцией и деструкцией (или минерализацией) органического вещества в планктоне. Изучение первичной продукции планктона тесно связано с вопросами антропогенного эвтрофирования водоемов, «цветения» воды.

Первичную продукцию, понимаемую как результат «истин­ного фотосинтеза», т.е. как совокупность новообразованных при фотосинтезе органических веществ, называют валовой пер­вичной продукцией. Часть новообразованных продуктов фото­синтеза тут же подвергается окислению в процессе дыхания фотосинтезирующих организмов, а оставшаяся часть между валовой первичной продукцией и тратами на дыхание, идущая на прирост биомассы фотосинтезирующих организмов, обозначается как чистая первичная продукция планктона, макрофитов или других автотрофных организмов.

Определение первичной продукции планктона

Благодаря разработке методов изучения первичной продукции, общая биологическая продуктивность водоема получила количественное выражение.

В процессе фотосинтеза поглощенная энергия солнечной радиации трансформируется в потенциальную энергию синтези­руемых органических веществ. Конечный итог этого процесса, сочетающего в себе ряд окислительно-восстановительных реак­ций, может быть выражен хорошо известным балансовым уравнением

Первичная продукция количественно может быть выражении скоростью потребления или выделения одного из участвующих в фотосинтезе веществ (О2, СО2, С орг и др., количественно связанных основным балансовым уравнением фотосинтеза:

В основе широко применяемых в настоящее время модификаций и схем определения первичной продукции лежат два метода – кислородный и радиоуглеродный, которые в свою очередь можно рассматривать как модификации скляночного метода. Сущность скляночного метода заключается в химическом или радиометрическом измерении количеств выделяемого кислорода или ассимилированного радиоактивного углерода (С 14 ) в пробах воды (заключенных в склянки) за определенное время экспозиции.

Для определения первичной продукции планктона кислородный метод предпочтителен как теоретически, так и практически. Он позволяет оценить валовую первичную продукцию, т.е. интенсивность истинного фотосинтеза планктона, по разности содержания кислорода в светлой и затемненной склянке после известной экспозиции в природных условиях. По убыли содержания кислорода в затемненной склянке по сравнению с исходной устанавливается скорость окислительной минерализации или деструкции органического вещества в процессе дыхания бактерио-, фито- и зоопланктона. Разность между валовым фотосинтезом и деструкцией дает чистую первичную продукцию. Определение растворенного в воде кислорода проводят общепринятым методом Винклера.

Для наблюдений используют склянки из белого стекла с притертыми пробками и с точно известным объемом каждой склянки. Обычно применяют склянки объемом 100-200 мл. Три склянки — контрольную /исходную/, светлую и темную — за­полняют водой из одного батометра» В контрольной склянке немедленно «фиксируют» растворенный кислород раствором хло­ристого марганца и едкой щелочи для определения исходного содержания кислорода. В конце экспозиции склянок кислород «фиксируют» тотчас же после снятия склянок с установки.

С практической точки зрения кислородный метод привлекает простотой процедуры эксперимента, доступностью и невысокой стоимостью реактивов, удобен при работе на катерах, где выполнение сложных химических анализов невозможно. Использование кислородного метода ограничено лишь в малопродуктивных морских и океанических водах из-за недостаточной его чувствительности.

Радиоуглеродный метод является наиболее распространенным методом определения первичной продукции как в морских водах. Впервые применен Стеман-Нильсеном в 1950 г. в море. В пробу воды вносят радиоуглерод C 14 в виде карбоната или гидрокарбоната натрия c известной радиоактивностью. В светлых склянках в процессе фотосинтеза происходит образование органического вещества фитопланктоном с включением изотопа углерода С 14 , внесенного в пробу перед экспозицией. В темновых склянках, где отсутствуют фотосинтез фитопланктона наблюдается темновая ассимиляция углерода бактериями за счет хемосинтеза и гетеротрофной ассимиляции, а также фоновые величины. После экспозиции склянок воду отфильтровывают через мембранный фильтр и измеряют радиоактивность фильт­ра с осажденным на нем планктоном. Зная величину внесен­ной в пробу радиоактивности и накопленной водорослями за экспозицию и содержание в воде растворённого не­органического углерода, скорость фотосинтеза можно рассчитать по формуле: А = (r/R)·C. Истинный фотосинтез (первичная продукция) фитопланктона определяется как разность величин полученных в светлых и темных склянках.

Для расчета важнейшего показателя первичной продукции планктона – интегральной первичной продукции (продукции под 1 м 2 поверхности водоема) – необходимо измерение скорости фотосинтеза на нескольких горизонтах фотической зоны.

Склянки с пробами воды отобранной на разных горизонтах прикрепляют с помощью разнообразных систем штативов, зажимов или крючков к тросу, устанавливаемо­му в водоеме в вертикальном положении. Обычно верхний конец троса прикрепляют к заякоренному бую или небольшому плоту. Однако экспозиция проб в столбе воды (метод “in situ”) – трудоемкий способ и технически невыполним в условиях краткосрочного рейса, сопряженного с другими работами.

К настоящему времени разработан ряд схем экспонирования проб воды вне водоема. С Наиболее перспективной считается схема, основанная на измерении скорости фотосинтеза в пробах воды, взятых с разных глубин и выдерживаемых в инкубаторах, затемненных нейтральными или синими светофильтрами, ослабляющими естественный свет в той же степени, в какой он ослаблен на глубинах отбора проб. Температура в таких инкубаторах обычно поддерживается близкой к естественной с помощью тока забортной воды.

Источник

Образование простых органических соединений

1. Образование простых органических соединений

Происхождение жизни связано с протеканием определенных химических реакций на поверхности первичной планеты. Каковы же основные этапы химической эволюции жизни?

На начальных этапах своей истории Земля представляла собой раскаленную планету. Вследствие вращения при постепенном снижении температуры атомы тяжелых элементов перемещались к центру, а в поверхностных слоях концентрировались атомы легких элементов (водорода, углерода, кислорода, азота), из которых и состоят тела живых организмов. При дальнейшем охлаждении Земли появились химические соединения: вода, метан, углекислый газ, аммиак, цианистый водород, а также молекулярный водород, кислород, азот. Физические и химические свойства воды (высокий дипольный момент, вязкость, теплоемкость и т. д.) и углерода (трудность образования окислов, способность к восстановлению и образованию линейных соединений) определили то, что именно они оказались у колыбели жизни.

На этих начальных этапах сложилась первичная атмосфера Земли, которая носила не окислительный, как сейчас, а восстановительный характер. Кроме того, она была богата инертными газами (гелием, неоном, аргоном). Эта первичная атмосфера уже утрачена. На ее месте образовалась вторая атмосфера Земли, состоящая на 20% из кислорода — одного из наиболее химически активных газов. Эта вторая атмосфера — продукт развития жизни на Земле, одно из его глобальных следствий.

Дальнейшее снижение температуры обусловило переход ряда газообразных соединений в жидкое и твердое состояние, а также образование земной коры. Когда температура поверхности Земли опустилась ниже 100°С произошло сгущение водяных паров. Длительные: ливни с частыми грозами привели к образованию больших водоемов. В результате активной вулканической деятельности из внутренних слоев Земли на поверхность выносилось; много раскаленной массы, в том числе карбидов — соединений металлов, с углеродом. При взаимодействии карбидов с водой выделялись углеводородные соединения. Горячая дождевая вода как хороший растворитель имела в своем составе растворенные углеводороды, а также газы (аммиак, углекислый газ, цианистый водород),’ соли и другие соединения, которые могли вступать в химические реакции. С особым успехом, видимо, протекали процессы роста молекул при наличии группы -N= С= N. У этой группы большие химические возможности к росту за счет какприсоединения к атому углерода атома кислорода, так и реагирования с азотистым основанием. Так постепенно на поверхности молодой планеты Земля накапливались простейшие органические соединения. Причем накапливались в больших количествах. Подсчеты показывают, что только посредством вулканической деятельности на поверхности Земли могло образоваться около 10 16 кг органических молекул. Это всего на 2—3 порядка меньше массы современной биосферы!

Вместе с тем астрономическими исследованиями установлено, что и на других планетах, и в космической газопылевой материи имеются углеродные соединения, в том числе углеводороды.

2. Возникновение сложных органических соединений

Второй этап биогенеза характеризовался возникновением более сложных органических соединений, в частности белковых веществ в водах первичного океана. Благодаря высокой температуре, грозовым разрядам, усиленному ультрафиолетовому излучению относительно простые молекулы органических соединений при взаимодействии с другими веществами усложнялись и образовывались углеводы, жиры, аминокислоты, белки и нуклеиновые кислоты.

Возможность такого синтеза была доказана опытами А.М. Бутлерова, который еще в середине прошлого столетия получил из формальдегида углеводы (сахар). В 1953—1957 гг. химиками различных стран (США, СССР, Германии) в целом ряде экспериментов из смеси газов (аммиака, метана, водяного пара, водорода) при 70—80°С и давлении несколько атмосфер под воздействием электрических разрядов напряжением 60000 В и ультрафиолетовых лучей была синтезированы органические кислоты, в том числе аминокислоты (глицин, аланин, аспарагиновая и глутаминовая кислоты), которые являются материалом для образования белковой молекулы. Таким образом, были смоделированы условия первичной атмосферы Земли, при которых могли образовываться аминокислоты, а при их полимеризации — и первичные белки.

Эксперименты в этом направлении оказались перспективными. В дальнейшем (при использовании других соотношений исходных газов и видов энергии) путем реакции полимеризации из простых молекул получали более сложные молекулы; белки, липиды, нуклеиновые кислоты и их производные, а позже была доказана возможность синтеза в условиях лаборатории и других сложных биохимических соединений, в том числе белковых молекул (инсулина), азотистых оснований нуклеотидов. Особенно важно то, что лабораторные эксперименты совершенно определенно показали возможность образования белковых молекул в условиях отсутствуя жизни.

С определенного этапа в процессе химической эволюции на Земле активное участие стал принимать кислород. Он мог накапливаться в атмосфере Земли в результате разложения воды и водяного пара под действием ультрафиолетовых лучей Солнца. (Для превращения восстановленной атмосферы первичной Земли в окисленную потребовалось не менее 1—1,2 млрд. лет.) С накоплением в атмосфере кислорода восстановленные соединения начали окисляться. Так, при окислении метана образовались метиловый спирт, формальдегид, муравьиная кислота и т.д., которые вместе с дождевой водой попадали в первичный океан. Эти вещества, вступая в реакции с аммиаком и цианистым водородом, дали начало аминокислотам и соединениям типа аденина. Важно и то, что более сложные органические соединения являются более стойкими перед разрушающим действием ультрафиолетового излучения, чем простые соединения.

Анализ возможных оценок количества органического вещества, которое накопилось неорганическим путем на ранней Земле, впечатляет: по некоторым расчетам за 1 млрд. лет над каждым квадратным сантиметром земной поверхности образовалось несколько килограммов органических соединений. Если их все растворить в мировом океане, то концентрация раствора была бы приблизительно 1%. Это довольно концентрированный «органический бульон». В таком «бульоне» мог вполне успешно развиваться процесс образования более сложных органических молекул. Таким образом, воды первичного океана постепенно насыщались разнообразными органическими веществами, образуя «первичный бульон». Насыщению такого «органического бульона» в немалой степени способствовала еще и деятельность подземных вулканов.

3. В чем суть принципа суперпозиции взаимодействий?

Этот принцип имеет важное значение в физике и особенно — в квантовой механике. Принцип суперпозиции[2] (наложения) — это допущение, согласно которому результирующий эффект представляет собой сумму эффектов, вызываемых каждым воздействующим явлением в отдельности. Одним из простых примеров является правило параллелограмма, в соответствии с которым складываются две силы, воздействующие на тело. Принцип суперпозиции выполняется лишь в условиях, когда воздействующие явления не влияют друг на друга. Встречный ветер тормозит движение автомашины по закону параллелограмма — принцип суперпозиции в этом случае выполняется полностью Но если песок, поднятый ветром, ухудшит работу двигателя, то в этом случае принцип суперпозиции выполняться не будет. Вообще, в ньютоновской физике этот принцип не универсален и во многих случаях справедлив лишь приближенно.

В микромире, наоборот, принцип суперпозиции — фундаментальный принцип, который наряду с принципом неопределенности составляет основу математического аппарата квантовой механики. В квантовой теории принцип суперпозиции лишен наглядности, характерной для классической механики, так как в квантовой теории в суперпозиции складываются альтернативные, с классической точки зрения, взаимоисключающие друг друга состояния.

В релятивистской квантовой теории, предполагающей взаимное превращение частиц, принцип суперпозиции должен быть дополнен принципом суперотбора. Простейший пример — при аннигиляции электрона и позитрона принцип суперпозиции дополняется принципом сохранения электрического заряда — до и после превращений сумма зарядов должна быть постоянной. Поскольку заряды электрона и позитрона равны и взаимно противоположны, должна возникать незаряженная частица, каковой и является рождающийся в этом процессе аннигиляции фотон.

А теперь ненадолго вернемся к принципам симметрии, которые, как мы уже знаем, лежат в основе законов сохранения физических величин, и в частности, в основе фундаментального закона сохранения энергии. Он выводит нас еще в одну область физики — термодинамику.

Источник

Оцените статью