Раствор соли мора с серной кислотой

Раствор соли мора с серной кислотой

Тема. Железо и его соединения.

      познакомить с некоторыми химическими свойствами соединений железа в различных степенях окисления.

    Реактивы: железные опилки Fe, соль Мора (NH4)2SO4·FeSO4·6H2O, раствор хлорида железа (III) FeCl3, раствор гексационоферрата (III) калия K3[Fe(CN)6], раствор гексационоферрата (II) калия K4[Fe(CN)6], раствор роданида калия KCNS, раствор соляной кислоты HCl (концентрированный и разбавленный), раствор серной кислоты H2SO4 (концентрированный и разбавленный), раствор азотной кислоты HNO3 (концентрированный и разбавленный), раствор гидроксида натрия NaOH (концентрированный и разбавленный).

    Посуда и оборудование: спиртовка, держатель для пробирок, штатив для пробирок, шпатель, пробирки, стеклянная палочка.

    Опыт 1. Свойства металлического железа

    Испытайте действие на железо концентрированных и разбавленных кислот при обычных условиях и при нагревании.

    Для этого поместите железные опилки в пробирку и прилейте несколько капель разбавленной соляной кислоты, запишите наблюдаемые явления и дайте им объяснения. Опыт повторите с разбавленными растворами серной и азотной кислот. Осторожно нагрейте те пробирки, в которых не происходит взаимодействие железа с кислотой. Отметьте наблюдения.

    Повторите опыт с концентрированными растворами кислот. Запишите наблюдаемые явления, обратите внимание на цвет и запах выделяющихся газов и на цвет растворов.

    1. В пробирку поместили железные опилки и прилили несколько капель разбавленной соляной кислоты.

    Наблюдается выделение бесцветного газа, раствор окрашивает-ся в бледно-зеленый цвет

    Fe 0 – 2e Fe 2+ восстановитель

    2H + + 2e H2

    Железо взаимодействует с соляной кислотой, проявляя восстановитель-ные свойства, в результате реакции образуется соль – хлорид железа (II) и выделяется бесцветный газ — водород

    Опыт 2. Гидроксид железа (II), получение и свойства

    Вскипятите немного воды, охладите ее и добавьте несколько кристаллов соли Мора (NH4)2SO4·FeSO4·6H2O. В пробирку со свежеприготовленным раствором соли Мора прилейте раствор гидроксида натрия до выпадения осадка. Отметьте цвет осадка. Оставьте осадок на воздухе и наблюдайте за быстрым изменением окраски.

    Запишите уравнение реакции получения гидроксида железа (II) (в уравнении учитывайте только FeSO4) в молекулярной и ионной форме и уравнение окисления гидроксида железа (II) кислородом воздуха. Сделайте вывод об устойчивости ионов двухвалентного железа.

    Опыт 3. Гидроксид железа (III), получение и свойства

    В пробирку поместите несколько капель раствора хлорида железа (III) и прибавьте по каплям раствор гидроксида натрия до выпадения осадка. Отметьте цвет осадка. Полученный осадок разделите на две части. К первой прилейте по каплям раствор соляной кислоты, ко второй – концентрированный раствор гидроксида натрия. Запишите наблюдаемые явления.

    Запишите уравнения получения гидроксида железа (III). Приведите уравнения растворения гидроксида железа (III) в кислоте и в щелочи, сделайте вывод о кислотно-основных свойствах гидроксида железа (III).

    Взаимодействие соли железа (II) с гексационоферратом (III) калия (качественная реакция на ионы Fe 2+ )

    В пробирку с раствором соли Мора (NH4)2SO4·FeSO4·6H2O прилейте несколько капель раствора гексационоферрата (III) калия (красной кровяной соли). Отметьте цвет осадка. Запишите уравнение реакции, дайте название образовавшемуся соединению KFe +2 [Fe +3 (CN)6] (используйте справочную литературу).

    Взаимодействие соли железа (III) с гексационоферратом (II) калия (качественная реакция на ионы Fe 3+ )

    В пробирку с раствором хлорида железа (III) прилейте несколько капель раствора гексационоферрата (II) калия (желтой кровяной соли). Отметьте цвет осадка. Запишите уравнение реакции, дайте название образовавшемуся соединению KFe +3 [Fe +2 (CN)6] (используйте справочную литературу).

    Взаимодействие соли железа (III) с роданидом калия (качественная реакция на ионы Fe 3+ )

    В пробирку с раствором хлорида железа (III) прилейте несколько капель раствора роданида калия. Отметьте цвет раствора. Запишите уравнение реакции.

    Сделайте общий вывод по работе.

    Пример оформления отчета приведен в лабораторной работе №2.

      1. Кузьменко Н.Е., Еремин В.В., Попков В.А. Начала химии. Современный курс для поступающих в вузы. – М.: Экзамен, 2004. – С. 415–416.
      2. Кузьменко Н.Е., Еремин В.В., Попков В.А. Химия. Для школьников старших классов и поступающих в вузы. – М.: ОНИКС 21 век: Мир и образование, 2002. – С. 258–259.
      3. Габриелян О.С., Остроумов И.Г., Соловьев С.Н., Маскаев Ф.Н. Общая химия: Учебник для 11 класса общеобразовательных учреждений с углубленным изучением химии. – М.: Просвещение, 2005. – С. 345–352.
      4. Фримантл М. Химия в действии. Т.2. – М.: Мир, 1991. – С. 147–149.

    Источник

    Опыт 2. Определение железа (II) в растворе соли Мора

    Соль Мора представляет собой двойную соль состава:

    При взаимодействии соли Мора с перманганатом калия соль закиси железа (Fe 2+ ) окисляется в соли окиси (Fe 3+ ) по уравнению:

    Выполнение работы. В мерную колбу емкостью 100 мл возьмите немного соли Мора добавьте дистиллированной воды до метки и хорошо перемешайте. Полученным раствором ополосните пипетку и перенесите 10мл исследуемого раствора в колбу. Добавьте цилиндром 8-10 мл 2н серной кислоты и титруйте перманганатом калия холодный раствор (нагревание способствует окислению Fe 2 + кислородом воздуха до Fe 3+ ). Титрование вести до появления бледно розовой окраски, не исчезающей в течение 1 мин. Повторите титрование не менее 3 раз, возьмите среднее из отчетов и вычислите количество граммов железа в исследуемом растворе.

    Вычисление. Нормальность Fe 2 + в соли Мора вычислите по затраченным на титрование объемом растворов (нормальность KMnO4известна из предыдущей работы ). Умножив нормальность на грамм- эквивалент железа (55,85г) найдете количество железа в 1 л раствора.

    Опыт 3. Определение содержания кальция в растворе.

    Катион Ca 2+ не отдаёт электронов, не может быть восстановлен и не реагирует с перманганатом калия. поэтому количество его нельзя определять непосредственным титрованием раствора перманганатом. Определение выполняют косвенным методом.

    Из анализируемого раствора ионы Ca 2+ осаждают действием щавелевой кислоты или оксалата натрия.

    Осадок оксалата кальция отфильтровывают, промывают и обрабатывают горячей разбавленной серной кислотой. При этом в раствор переходит эквивалентное кальцию количество щавелевой кислоты:

    Щавелевую кислоту титруют рабочим раствором перманганата калия:

    При вычислении надо учитывать, что эквивалент H2C2O4*2H2O в данном случае равен Ѕ грамм- молекулы, а эквивалент Ca 2+ соответственно Ѕ его грамм- атома, т. е 20,04 г.

    Выполнение работы.В химический стакан возьмите для анализа немного раствора соли Ca 2+ (около 0,05 г Ca 2+ ). Прибавьте к нему 5- 6 мл 1 н. раствора щавелевой кислоты и нагрейте смесь до кипения. Затем, добавив 2- 3 капли метилового оранжевого медленно нейтрализуйте жидкость аммиаком до перехода красной окраски индикатора в желтую. Содержимому стакана дайте постоять до тех пор, пока осадок оксалата кальция CaC2O4 соберется на дне. Осадок отфильтровывают через синий фильтр, промывают, затем растворяют в серной кислоте разбавляя (1:5) и освободившуюся щавелевую кислоту титруют раствором перманганата калия. Количество перманганата калия, пошедшее на окисление щавелевой кислоты, эквивалентно количеству кальция. Процесс титрования заканчивают с появлением в растворе слабо- малинового цвета, титрование повторяют 2- 3 раза.

    Количество Ca 2+ в растворе вычисляют по формуле:

    N KMnO4 – нормальность, V KMnO4 — объём средний израсходованного в процессе титрования, ЭCa – грамм- эквивалент Ca 2+

    Иодометрия

    Иодометрия-метод количественного объемного анализа, в основе которого лежит реакция восстановления свободного йода в йод-ион или окисления йод-иона в свободный иод. Направление реакции зависит от окислительной способности вступающих в реакцию с йодом веществ: например с Na2S2O3 реакция идет слева направо, с КМп04, К2Сг2О7-справа налево. Степень окислительной способности кислородсодержащих соединений зависит от активной реакции среды (концентрации ионов); меняя ее, легко можно изменить направление процесса. Главнейшей в йодометрии реакцией является восстановление J раствором тиосульфата натрия (гипосульфита натрия- Na2S2O3). Индикатором при титровании служит обычно раствор крахмала (0,2%-ного раствора на 100 см 3 жидкости), дающего с йодом в присутствии растворимых иодидов синее окрашивание. При титровании до исчезновения синего окрашивания последнее часто вновь появляется через некоторое время. Это может зависеть 1) от медленного течения реакции восстановления йода; 2) от окислительных процессов за счет кислорода воздуха (особенно при солнечном свете); 3) от участия в реакции посторонних веществ; особенно сильно влияет азотистая кислота; присутствуя в ничтожном количестве (напр. в лабораторном воздухе). Для приготовления раствора Na2S2O3 около 25 г химически чистого препарата) растворяют в 1 л воды и устанавливают титр спустя 10-14 дней после приготовления. Раствор тиосульфата нужно хранить в темном месте и титр следует проверять раз в 2 месяца.

    Децинормальный раствор иода готовится растворением 12,8-13 г иода и 25 г йодистого калия в 1 литре воды. Раствор не стоек, и титр его следует проверять; раствор надо хранить в темноте. Титр устанавливают по раствору тиосульфата. Благодаря очень большой чувствительности реакции иода с крахмалом и отчетливости изменения цвета при конце титрования. Йодометрия считается одним из лучших методов коли-чественного анализа и получила широкое применение в химии.

    Лабораторная работа

    Опыт 1. Приготовление рабочего раствора тиосульфата натрия и определение его концентрации по титрованному раствору перманганата калия.

    Рассмотрим окислительно-восстановительные процессы в реакции тиосульфата натрия с йодом:

    2S2O3 2- + I2= S4O6 2- + 2I —

    Так как два иона S2O3 2- Теряют два электрона (по одному на каждый ион), то грамм-эквивалент восстановителя (тиосульфата натрия) равен:

    г-экв Na2S2O3· 5Na2O= = = 248,19г.

    Приготовить титрованный раствор тиосульфата натрия по точной навеске нельзя вследствие того, что кристаллы тиосульфаты натрия на воздухе выветриваются, и химический состав их не всегда соответствует формуле Na2S2O3 · 5H2O. Поэтому тиосульфат натрия готовят приблизительной концентрации, растворяя навеску тиосульфата натрия в свежекипяченой и охлажденной дистиллированной воде. Раствор выдерживают 8-10 дней. Хранят раствор в бутыли из темного стекла с пробкой, снабженной хлоркальциевой трубкой. Концентрация тиосульфата натрия устанавливается с помощью окислителя с известной концентрации. В качестве таких окислителей применяют перманганат калия (в кислой среде), бихромат калия (в кислой среде) и йод.

    Выполнение работы. В коническую колбу влить последовательно 20-25 мл. 2 н. серной кислоты, 15-20 мл. 10%-го раствора йода калия и точно отмеренный объем (отмерять пипеткой) титрированного раствора перманганата калия. Происходит реакция:

    Накрыв колбу стеклом, смесь выдерживают 3-5 мин, поместив колбу в темное место. Затем добавить 100 мл дистиллированной воды и титровать тиосульфатом натрия:

    Сначала титруют без крахмала до получения бледно-желтой окраски раствора. Затем, прилить 2-3 мл раствора крахмала и продолжать титровать до полного исчезновения окраски. Тиосульфат натрия следует приливать осторожно, перемешивая содержимое колбы после каждой прибавленной капли. Титрование повторить не менее трех раз. Из реакции видно, что перманганат калия непосредственно с тиосульфатом натрия не взаимодействует, но число затраченных грамм-эквивалентов тиосульфата равно числу грамм-эквивалентов йода, а последнее – числу грамм-эквивалентов перманганата калия. Поэтому, зная концентрацию перманганата калия и тиосульфата натрия, можно, пользуясь основным соотношением объемного анализа, рассчитать концентрацию тиосульфата натрия по формуле: VKMnO4· NKMnO4= VNa2S2O3· NNa2S2O3

    Затем рассчитываем титр раствора тиосульфата натрия:

    Опыт 2. Приготовление рабочего раствора йода и определение его нормальности и титра по титрованному раствору тиосульфата натрия.

    Для приготовления раствора йода по точной навеске его необходимо очищать возгонкой. Но можно приготовить титрованный раствор и из йода без предварительной очистки. Готовится раствор приблизительно нужной концентрации, а затем определяют его нормальность по раствору тиосульфата натрия. Для приготовления 0,02 н. раствора йода отвешивают около 2,7 г. кристаллического йода (грамм-эквивалент йода равен 126,91 г; 126,91 · 0,02 = 2,54 г.) и растворяют его в концентрированном растворе йодистого калия (йод плохо растворим в воде). Растворение йода проводят в мерной литро­вой колбе, а затем разбавляют дистиллированной водой до метки.

    Выполнение работы.В коническую колбу влить определен­ный объем 10мл (отмеренный пипеткой) приготовленного раство­ра йода. Разбавить приблизительно таким же объемом дис­тиллированной воды. Титровать рабочим раствором тиосуль­фата натрия до появления светло-желтого окрашивания. До­бавить 2 мл раствора крахмала и продолжать титрование до полного обесцвечивания раствора. Нормальность раствора йода определить по уравнению:

    Источник

    Читайте также:  Судак снять жилье посуточно у моря
Оцените статью