Способ титрования хлорид ионов по методу мора

Метод Мора

Метод Мора является одним из аргентометрических методов. Все эти методы основаны на реакции:

Аg + + Наl — → АgНаl↓

Метод Мора является наиболее простым из всех методов аргентометрии и в то же время достаточно точным. Титрантом является раствор нитрата серебра АgNОз 0.1 моль/л.

В основу метода Мора положена реакция взаимодействия ионов серебра с С1 — или Вг — .

Индикатором является хромат калия К2СгО4 5 %. Установочным веществом для определения титра раствора является NаС1 или КС1 0.1 моль/л.

Метод Мора позволяет определить количество хлоридов или бромидов. Иодиды этим методом не определяют, так как выпадающий в осадок иодид серебра АgI сильно адсорбирует К2СгО4, поэтому точку эквивалентности определить невозможно.

Растворимость АgСl значительно меньше, чем растворимость Аg2СгO4. Поэтому если постепенно добавлять раствор АgNOз к раствору, содержащему Сl — и CrO4 2- , то ПРAgС| достигается раньше ПР Аg2СгO4.

Это означает, что вначале образуется труднорастворимая соль

После того как хлорид-ионы будут практически полностью выделены в виде АgС1, появляется осадок. Происходит изменение окраски титруемой смеси и таким образом определяется конец титрования.

При титровании раствора бромида происходит аналогичное явление. Так как ПРАgВг + + 2OH — → Ag2O↓ + H2O

2. Определение нельзя проводить в присутствии ионов Ва 2+ , Вi 3+ , Рb 2+ , так как эти ионы образуют с ионами СгО4 2 — осадки.

3. Титрование всегда ведут от галогенида к АgNOз (т. е. галогенид титруют раствором АgNОз, а не наоборот). Только при таком условии кирпично-красный осадок Аg2СгО4 образуется в точке эквивалентности.

Метод Мора находит широкое применение при анализе пищевых продуктов. Количество поваренной соли в колбасе, соленой рыбе, масле и других продуктах определяют по методу Мора.

Этот метод применяется также для определения хлоридов в воде. Метод Мора используется и при анализе некоторых фармацевтических препаратов, например хлоридов и бромидов натрия и калия.

Определение хлоридов методом Мора

Приготовление титранта 0.05 моль/л раствора. Нитрат серебра не относится к тем веществам, из которых можно приготовить раствор заданной концентрации по точно взятой навеске. Поэтому готовят раствор примерно требуемой концентрации, а его титр устанавливают. Необходимую навеску (8.5 г AgNОз на 1 л раствора) отвешивают с точностью до 0.1 г на технических весах, и нужное количество воды отмеривают мерным цилиндром. Раствор сохраняют в темноте, так как на свету нитрат серебра разлагается. Однако и при надлежащем хранении титр раствора АgNОз меняется с течением времени и его необходимо время от времени проверять.

Приготовление установочного раствора. Для приготовления 0.05 моль/л, раствора NаС1 отвешивают на аналитических весах 0.2922 г NаС1 и количественно переносят в мерную колбу вместимостью 100 мл. Растворяют навеску в дистиллированной воде, доводят раствор до метки и хорошо перемешивают. Таким образом получают раствор NаС1.

Определение титра нитрата серебра. В качестве индикатора применяют 5 % раствор хромата калия К2СгО4 в воде. Наполняют бюретку раствором нитрата серебра АgNОз. Отобрав пипеткой 10 мл 0.05 моль/л раствора NаС1, переносят ее в колбу Эрленмейера вместимостью 250 мл, добавляют 0.5 мл раствора индикатора, немного разбавляют водой и медленно титруют 0.1 моль/л раствором АgNОз, непрерывно перемешивая жидкость до появления первого неисчезающего изменения цвета суспензии. Нужно уловить момент, когда лимонно-желтый цвет суспензии приобретет от капли АgNОз слегка красноватый оттенок. Запись анализа и расчеты производят так же, как при определениях кислотно-основным методом.

Определение хлорида в растворе. Раствор хлорида помещают в мерную колбу на 100 мл, доводят дистиллированной водой до метки и перемешивают. Для титрования отбирают в коническую колбу 10 мл полученного раствора, немного разбавляют водой, добавляют 0.5 мл раствора К2СгO4 и титруют раствором АgNОз до изменения окраски содержимого колбы из лимонно-желтой в желто-розовую. Рассчитывают содержание хлора в полученном растворе (в граммах).

Источник

Осадительное титрование. Определение содержания хлоридов в растворе методом Мора. Условия проведения титрования. Реакции, лежащие в основе метода, индикаторы, расчетные формулы

Титрование – процесс, в котором к определяемому веществу по каплям добавляют раствор титранта, точно до того момента, при котором количество добавляемого титранта строго эквивалентно количеству определяемого вещества.

Осадительное титрование основано на реакциях, сопровождающихся образованием малорастворимых соединений. Для этого необходимо соблюдение ряда условий:

  1. Осадок должен быть практически нерастворимым.
  2. Выпадение осадка должно происходить достаточно быстро (т.е. не должно сказываться явление образования пересыщенных растворов).
  3. Результаты титрования не должны в заметной степени искажаться явлениями адсорбции (соосаждения).
  4. Должна иметься возможность фиксировать точку эквивалентности при титровании.

Наиболее распространенным является метод, основанный на применении титрованных растворов серебра – аргентометрия. Этим методом определяют как галогениды и роданид – ион, так и серебро в различных образцах. Ag+ + X = AgX (осадок) (X = Cl-, Br-, I-, SCN-).

Определение хлорид — ионов методом Мора.

Метод основан на прямом титровании раствора, содержащего хлорид – ионы стандартным раствором нитрата серебра в присутствии индикатора – хромата калия. Применение хромата –калия в качестве индикатора основано на способности CrO42- давать с Ag+ кирпично – красного цвета осадок Ag2CrO4, который в определенных условиях начинает выпадать лишь после того, как определяемые Cl- ионы будут практически полностью осаждены в виде AgCl.

Ag+ + Cl- = AgCl (осадок)

2Ag+ + CrO4 2- = AgCrO4 (кирпично – красный цвет).

Фиксирование точки эквивалентности происходит благодаря тому, что в колбу для титрования добавляют K2CrO4.

До точки эквивалентности: Cl- + Ag+ = AgCl (осадок)

В точке эквивалентности: AgCl, CrO4.

После точки эквивалентности: CrO4 2- + 2Ag+ = Ag2CrO4 (осадок)

К. Т. Т. – конечная точка титрования. Ошибка титрования связана с тем, что нам нужно перетитровать раствор. Точка эквивалентности неравна К.Т.Т.

ПР (AgCl) меньше, чем ПР (Ag2CrO4).

При проведении определения нужно контролировать рН. Это связано с тем, что в:

Кислой среде (при рН меньше 6,5), труднее зафиксировать К.Т.Т, потому что протекает реакция с индикатором CrO4. 2CrO4 2- + 2H+ = Cr2O7 2- + H2O

Щелочной среде происходит разрушение титранта AgNO3 Ag+ + OH- = AgOH,

2AgOH = Ag2O (осадок) + H2O.

В методе Мора всегда нужно к измеренному объему раствора соли галогена приливать раствор соли серебра из бюретки, так как только в этом случае получается резкое изменение окраски в конце титрования.

Метод Мора применим только для титрования в нейтральной или слабощелочной среде (рН 6,5 – 10), так как Ag2CrO4 растворим в кислотах и в их присутствии не выпадает.

Если анализируемый раствор имеет кислую реакцию, его нейтрализуют раствором тетрабората натрия Na2B4O7 * 10H2O или бикарбоната натрия NaHCO3. Другим условием применимости метода Мора является отсутствие в исследуемом растворе катионов, дающих с CrO4 2- осадки. Таковы, например, Ba2+, Pb2+, Bi3+.

Расчет массы хлорид – ионов проводится по формуле: m Cl = N (AgNO3) * Э Cl * V (AgNO3) / 1000, г.

52)ЙОДОМЕТРИЯ. Йодометрическое определение меди. В основе всех йодометрических определений лежит реакция I2 — + 2e ® 2I — . Стандартный окислительно-восстановительный потенциал которой Е 0 (I2/2I — )=0,54 В. Определение меди основано на взаимодействии ионов Cu 2+ c иодид-ионами, в результате чего образуется осадок CuI и выделяется I2, который титруют раствором тиосульфата натрия в присутствии крахмала в качестве индикатора.

2Cu 2+ + 4I — = 2CuI (осадок) + I2

Расчетная формула: mСu = N(Na2S2O3) * ЭCu * V(Na2S2O3) / 1000.

  1. Потенциал пары I2/2I — невелик, и поэтому многие йодометрические реакции обратимы и до конца не доходят; только при создании надлежащих условий они протекают практически до конца.
  2. Иод – вещество летучее, поэтому титрование ведут на холоду. Это необходимо также потому, что с повышением температуры понижается чувствительность крахмала как индикатора.
  3. Йодометрическое титрование нельзя проводить в щелочной среде, так как иод реагирует со щелочами: I2 + 2OH = IO — + I — + H2O.
  4. Растворимость йода в воде мала, поэтому при йодометрических определениях окислителей необходимо применять значительный избыток KI.
  5. Скорость реакции между определяемым окислителем и I — — ионами оказывается обычно недостаточной. Поэтому к титрованию выделившегося йода приступают лишь через некоторое время после прибавления окислителя.
  6. Реакционную смесь сохраняют в темноте, так как свет ускоряет в кислых растворах побочную реакцию окисления I — — ионов до I2 кислородом воздуха:

Линия окислителей – основной раствор KI, поэтому прямое титрование этим раствором не используется, чаще используется титрование по замещению.

Cr2O7 2- + 6I- изб +14H+ = 2Cr 3+ + 3I2 + 7H2O

Линия восстановителей – основной раствор молекулярного йода (I2). Растворами йода молекулярного можно определить As 3+ , Sb 3+ , Sn 2+ , H2S, SO3 2- .

53. Комплексонометрическое определение кальция и магния в растворе.

Сущность метода сводится к тому что вначале определяют суммарное содержание ионов кальция и магния при pH=9, а затем содержание только кальция при pH=12. Содержание магния отсюда находится n(Mg)=n(Ca+Mg) или ОЖВ – n(Ca) Для раздельного комплексонометрического определения кальция и магния используют различие в значениях рН, при которых осаждаются их гидроокиси. Осаждение магния в виде гидроокиси начинается при рН —- 11 [273]. Определение кальция в присутствии магния обычно проводят при рН 12,5, когда ионы магния практически полностью осаждаются в виде гидроокиси.

Мурексид в щелочной среде взаимодействует с кальцием с образованием ярко-розового комплексного соединения состава 1 : 1 Са 2+ + Н2Y 2- → СаY 2- + 2Н +

При комплексонометрическом титровании кальция ярко-розовая или красная окраска раствора переходит в фиолетовую.

Билет 54. Комплексонометрическое титрования

Титрантом является ЭДТУ или ее динатриевая соль ЭДТА, к-рая наз. комплексоном III или трилоном Б. Метод основан на ценном свойстве комплексонов, широко используемом в анализе, их способность давать внутрикомплексные соли с ионами щелочноземельных металлов: магнием, кальцием и барием.

Комплексы, образуемые комплексонами с большинством катионов металлов, весьма устойчивы, что вполне обеспечивает практически полное связывание определяемого металла в комплекс.

Общая жесткость воды обусловлена присутствующими в ней солями Ca и Mg. Метод основан на образовании при рН=10±0,2 прочного бесцветного комплексного соединения трилона Б с ионами кальция и магния. В эквивалентной точке титрования все ионы кальция и магния связываются в комплексное соединение трилоном Б, в результате чего происходит изменение окраски индикатора от красной до голубой.

Са 2+ + Н2Y 2- → СаY 2- + 2Н + Mg 2+ + Н2Y 2- → Mg Y 2- + 2Н +

Выполнение определения. Отбирают пипеткой 50 мл исслед. воды и переносим в коническую колбу для титрования, прибавляем 15 мл аммиач.буфера, перемешиваем и вносим на кончике ложечки индикатора ЭХЧ-Т. Р-р перемешиваем и титруем 0,05 Мэкв. р-ром ЭДТА до перехода красной окраски в синюю. Определяем средний V титранта после неск.повторов. жесткость воды рассчитываем по формуле: ОЖВ = Сн(Na2Н2Y)*V(Na2Н2Y)*1000/Vаликв.

55.

Источник

Метод Мора

Этот метод позволяет определить содержание хлоридов или бромидов:

Ag + + Сl — = AgCl↓; Ag + + Br — = AgBr↓.

Рабочим раствором в методе Мора является раствор ни­трата серебра AgNO3. Исходным веществом для определе­ния молярной концентрации эквивалента раствора AgNO3 является хлорид натрия NaCl или хлорид калия КСl. Для определения конца титрования используется индикатор хромат калия К2СrO4, который с нитратом серебра образу­ет кирпично-красный осадок хромата серебра Ag2CrО4:

При титровании хлоридов и бромидов образуется бе­лый осадок AgCl или желтовато-белый осадок AgBr. Ког­да ионы Сl — или Вr — будут практически полностью в осад­ке, то в растворе появляется избыток AgNO3, взаимодействующий с К2СrО4 с образованием кирпично-красного осадка Ag2CrO4. Осадки галогенидов серебра окрашивают­ся при этом в розовый цвет, по появлению которого судят о том, что реакция между галогенид-ионами и ионами Ag + за­кончилась. Такая последовательность образования осадков объясняется тем, что растворимость AgCl (1,25 • 10 -5 моль/л) и растворимость AgBr (7,94 • 10 -7 моль/л) меньше раствори­мости Ag2CrO4 (1 • 10 -4 моль/л). Поэтому при титровании из растворов прежде всего выпадают осадки галогенидов серебра и только после полного осаждения ионов Сl — и Вr — начинает образовываться осадок хромата серебра.

Йодйд-ионы невозможно определить методом Мора, так как выпадающий осадок йодида серебра Agl сильно адсорбирует К2СrO4, вследствие чего осадок окрашивает­ся до точки эквивалентности.

Применение метода Мора ограничено, так как точные результаты можно получить только в нейтральной среде. В кислой среде К2СrO4 переходит в К2Сr2O7, не обладаю­щий свойствами индикатора в результате высокой раство­римости Ag2Cr2O7. В присутствии щелочей метод Мора также не применяется, так как в таких растворах образу­ется AgOH, распадающийся на Ag2O и Н2О:

В присутствии аммиака и его солей осадки AgCl и Ag2CrO4 растворяются с образованием комплексных со­единений. Этот метод не применяется также в присутст­вии ионов Ва 2+ , Pb 2+ , Bi 3+ , так как эти ионы образуют с хромат-ионами осадки.

Титрование по методу Мора следует проводить при комнатной температуре, так как с повышением темпера­туры увеличивается константа растворимости Ag2CrO4; вследствие этого уменьшается чувствительность индика­тора к иону Ag + .

При определении солей галогенов (рабочий раствор AgNO3) или солей серебра (рабочий раствор NaCl) реко­мендуется придерживаться следующего порядка титрова­ния: всегда приливать из бюретки раствор соли серебра к раствору соли галогена. Только при такой последователь­ности титрования получается резкое изменение окраски индикатора в конце титрования.

Рабочим раствором в методе Мора является 0,05000 н. или 0,1000 н. раствор AgNO3. Молярная масса эквивалента нит­рата серебра равна его молярной массе, т.е. 169,89 г/моль.

Следовательно, для приготовления 1 л 0,05 н. раствора на­до взять 8,5 г нитрата серебра. Эту навеску взвешивают на технических весах. Точную концентрацию приготовлен­ного раствора AgNO3 устанавливают по стандартному рас­твору хлорида натрия. Приготовленный раствор AgNO3 изменяется при длительном хранении. Под влиянием све­та разложение ускоряется. Вследствие этого раствор хра­нят в склянках из оранжевого стекла или в посуде, обер­нутой черной бумагой. С течением времени концентрацию раствора AgNO3 проверяют.

Стандартный раствор хлорида натрия получают раство­рением точно известного количества химически чистого хлорида натрия в определенном объеме воды. Если химиче­ски чистого хлорида натрия нет, то его получают перекрис­таллизацией поваренной соли из воды. Для приготовления 0,05000 н. раствора NaCl взвешивают на аналитических ве­сах 0,5844 г NaCl и количественно переносят в мерную кол­бу на 200 мл. Растворяют навеску в дистиллированной во­де, доводят водой до метки и тщательно перемешивают.

Метод Мора применяется при анализе пищевых про­дуктов (колбаса, соленая рыба, сливочное масло), где оп­ределяется количество поваренной соли. Для определения хлоридов в воде также используется этот метод. Мето­дом Мора анализируются лекарственные препараты — КСl, KBr, NaCl, NaBr и др.

Лабораторная работа 1. Стандартизация рабочего рас­твора нитрата серебра по 0,05000 н. раствору хлорида на­трия.

Цель работы. Получить навыки стандартизации рабо­чего раствора по первичному стандарту.

Оборудование. Бюретка вместимостью 25 мл, пипетка Мора, колбы для титрования.

Реактивы. Рабочий раствор AgNO3, стандартный рас­твор 0,05000 н. NaCl, индикатор хромат калия с массовой долей его 5 %.

Выполнение работы. В три колбы для титрования с по­мощью пипетки Мора вносят по 10 мл 0,05000 н. раствора хлорида натрия и добавляют по 0,5 мл раствора индикато­ра. При постоянном перемешивании из бюретки медленно приливают раствор нитрата серебра до появления неисчезающего красного окрашивания. Результаты титрования записывают в таблицу (см. гл. 20.6.).

Обработка результатов эксперимента. Находят средний объем раствора AgNO3, затраченного на титрование раствора NaCl. Рассчитывают молярную концентрацию эквивалента раствора AgNO3 из соотношения V(AgNO3) • C(AgNO3) = V(NaCl) • C(NaCl). Рассчитывают титр рабочего раствора AgNO3 по формуле (19.10). Формулируют вывод, характе­ризующий результат проведенного титрования.

Лабораторная работа 2.Определение содержания хло­рида натрия в растворе.

Цель работы.Закрепить навыки титрования по методу Мора.

ОборудованиеСм. лабораторную работу 1.

Реактивы.Раствор хлорида натрия, предложенный преподавателем, рабочий раствор AgNO3 с молярной кон­центрацией эквивалента 0,05000 моль/л, индикатор хро­мат калия с массовой долей его 0,5 %.

Выполнение работы.Раствор хлорида натрия помеща­ют в мерную колбу на 100 мл, добавляют воды до метки и перемешивают. В три колбы для титрования вносят с по­мощью пипетки Мора по 10 мл полученного раствора, до­бавляют по 0,5 мл раствора индикатора. Титруют раство­ром AgNO3 до появления неисчезающего красного окра­шивания.

Обработка результатов эксперимента.Рассчитывают концентрацию раствора NaCl в моль/л, используя закон эквивалентов: V(NaCl) • C(NaCl) = V(AgNO3) • C(AgNO3). За­тем рассчитывают титр раствора NaCl по формуле (19.10). Умножая титр раствора NaCl на объем колбы (100 мл), уз­нают массу хлорида натрия в растворе, предложенном преподавателем для анализа.

Делают вывод о полученных результатах.

Дата добавления: 2014-11-13 ; просмотров: 34 ; Нарушение авторских прав

Источник

Читайте также:  Как по вольной волюшке по зелену морю ходят все кораблики белопарусники
Оцените статью
Читайте также:
  1. Amp; Методичні вказівки
  2. Amp; Методичні вказівки
  3. Amp; Методичні вказівки
  4. Amp; Методичні вказівки
  5. Amp; Методичні вказівки
  6. Amp; Методичні вказівки
  7. Amp; Методичні вказівки
  8. B. Искусственная вентиляция легких. Методики проведения искусственной вентиляции легких
  9. Cтруктуры внешней памяти, методы организации индексов
  10. FDDI. Архитектура сети, метод доступа, стек протоколов.