Способы очистки океана от нефти

Способы очистки океана от нефти

Нефть и нефтепродукты являются особо опасными загрязнителями окружающей среды, в частности, гидросферы. Загрязнение воды (рек, озёр, морей, океанов) неизменно сопровождает добычу, транспортировку, переработку и использование «чёрного золота». Попадание нефти в гидросферу происходит разными путями. По разным оценкам ежегодно в Мировой океан сбрасывается от 2 до 10 тонн нефти. Тонна нефти загрязняет 12 кв. км поверхности океана.

Растворимость нефти в воде незначительна, плотность меньше воды, накопление её происходит, в основном, на поверхности водоёма. В зависимости от толщины нефтяной плёнки, влияние её на обитателей биогеоценоза, различно. Животные, птицы, рыбы и другие обитатели водоёма могут отравиться, если поглотят нефть, умереть от удушья, голода и холода. Нефтяная плёнка препятствует процессу фотосинтеза, изменяются цепи питания и жизнь всех организмов.

Современные способы очистки воды подразделяются на механические, химические, физико-химические и биологические. Применение каждого способа определяется количеством и площадью нефтяного загрязнения. Механический способ позволяет удалить нефть с поверхности водоёма путём отстаивания, фильтрации, сбора в специальные контейнеры и с последующим сжиганием. Химический способ – это очистка с помощью реагентов, которые осаждают нефть в виде нерастворимых осадков. Физико-химический способ позволяет удалить из воды нефтепродукты на основе использования угольных фильтров и волокнистых материалов. В практике широко применяются искусственные сорбенты на основе природных минералов (вулканические шлаки, цеолиты и другие). Предлагают использовать пластмассовые микробаллоны – пламилоны. Высокую эффективность показали сорбенты, полученные на основе фенолформальдегидных смол. Биологический способ очистки водоёма наиболее оптимален для всех обитателей биоценоза. На сегодняшний день открыто более 1000 видов микроорганизмов, питающихся нефтью. Наиболее известны культуры дрожжей рода Candida.

Читайте также:  Что омывает оаэ дубай море или океан

В школьной химической лаборатории для эксперимента была взята нефть, добытая в Западной Сибири и поставляемая для переработки на ООО «РН-Комсомольский НПЗ». Для очистки воды, загрязнённой нефтью, были использованы следующие сорбенты: активированный уголь, волокна растительного происхождения (хлопок), минерального (асбест), оксид алюминия, древесные опилки, песок, стиральный порошок, прессованная бумага (картон), пенопласт, массой 20 грамм. Было взято 10 проб, в каждой из которых находилась вода объёмом 100 мл и нефть по 2 мл. Органолептическими методами удалось описать образцы воды после очистки. Результаты проведённого эксперимента представлены в следующей табл. 1.

По степени прозрачности во всех пробах, кроме пробы № 8, очищенная вода прозрачная. По цветности наиболее ярко выраженную окраску имела проба № 8, пробы № 4, 7, 9, 10 имели на поверхности едва заметное радужное пятно, что подтверждает неполную очистку воды от нефти. По запаху проба № 8 имела характерный запах нефти, в остальных пробах запах был резким, пары нефти не полностью поглотились сорбентами.

Очищенную воду проверили действием следующих индикаторов: фенолфталеина, метилового оранжевого, лакмуса, Конго, йодкрахмального. В пробе № 8 индикаторы изменили цвет, при взаимодействии с бесцветным фенолфталеином появилось розовое окрашивание и лакмус оранжевый сменил окраску на синюю, что подтверждает слабощелочную среду воды, полученной после очистки стиральным порошком.

В ходе эксперимента было определено время, в ходе которого происходила очистка.

Время, затраченное на очистку воды от нефти с помощью соответствующего реагента

Источник

Очистка воды от нефтепродуктов

Очистка воды от нефтепродуктов может состоять из физико-химических, химических, механических и биологических способов. Использование каждого метода зависит от масштабов и первоисточника загрязнения, объема нефтяных выбросов.

Механическая очистка

Механическая очистка состоит из отстаивания и последующей фильтрации загрязненной воды с использованием нефтеловушек, бензомаслоуловителей или ручным методом. Все они основаны на способности нефти не смешиваться с водой, а создавать масляное пятно. Ее собирают в полиэтиленовые пакеты с последующей утилизацией – сжиганием.

Механической очисткой можно удалить до 75% нерастворимых нефтепродуктов. Это не достаточно для эффективной очистки воды.

Основным недостатком метода является забор воды вмести с тонкой нефтяной пленкой. Хорошо собрать нефтепродукты возможно только при толстом слое, что случается только при больших техногенных катастрофах.

Химическая очистка

Химическая очистка подразумевает обязательное использование х, которые химических примесей, реагирующие с нефтепродуктами. В ходе химических реакций образуется нерастворимый в воде осадок, легко удаляемый механической фильтрацией. Эффективность удаления растворимых примесей – 25%, нерастворимых – 95%. Химическая очистка основана на одном из двух методов:

  • провоцирование образования масляного пятна, используя эмульгаторы эмульсий из воды и нефти или поверхностно-активных веществ (ПАВ);
  • поглощение нефтепродуктов адсорбентами: оксид алюминия, алюмосиликаты.

Второй способ используется во время локального разлива нефти и имеет эффективность – 98%.

Физико-химическая очистка

Физико-химическая очистка включает коагуляцию, адсорбцию, окисление, экстракцию и другие методы очистки. Происходит удаление тонкодисперсных растворенных примесей, а так же распад органики.

Для адсорбции часто берут измельченный активированный уголь мелкой фракции. Его наносят равномерным слоем на пятно, что препятствует его увеличению. Смешавшаяся с водой нефть прилипает к частичкам угля и легко удаляется. Смесь угля и нефти хорошо горит, что облегчает дальнейшую утилизацию.

Используют пенополиуретан с высокой степенью поглощения. Он вбирает в себя в 20 раз больше нефтепродуктов, чем собственный вес.

Выливают на нефтяное пятно жидкий парафин. При затвердении он впитывает в себя нефтепродукты и легко удаляется механическим путем.

Снижение токсичности и разрушения биохимического состава нефти можно достичь, используя эмульгаторы и ПАВ. Нефть переходит в эмульсию и быстрее распадается.

В борьбе с нефтяными пятнами эффективен ферримагнитный порошок ФЕР-3 из оксида железа. Пленка приобретает магнитные свойства и собирается специальной ловушкой. Способ обладает техническими и экологическими преимуществами, но не распространен из-за отсутствия широкого распространения специальных порошков.

Были проведены лабораторные исследования с порошком ФЕР-3. Время сортирования составила 5-15 минут. Удаляется до 80% нефтяной пленки. Образованные большие глобулы собираются механически. Благодаря текучести суспензии ее восстанавливают сепарацией.

Биологический метод

Биологическая очистка является наиболее распространенной в удалении нефтепродуктов из воды. Используются особые микроорганизмы, которые поедают нефть. Сегодня найдено более 1 тысячи простых организмов, которые питаются различными углеводородами.

Например, дрожжи Candida питаются нефтяными парафинами. В итоге получается большой объем биомассы с большой концентрацией витаминов и белка.

Популярными биологическими средствами являются препараты «Деворойл» и «Ленойл». Они эффективны в разложении нефтепродуктов, которые присутствуют в почвах и водоемах.

«Деворойл» состоит из 5 видов дрожжей и бактерий, способные окислять углеводороды. Каждый вид эффективен борьбе с определенной фракцией нефти. Их набор позволяет равномерно обрабатывать все фракции. «Ленойл» состоит из ассоциации микроорганизмов.

Оба препараты имеют широкое воздействие на углеводороды и легко внедряются в нефтяной слой, возвращая нормальные процессы аэрации.

Уфимский научный центр проводил сравнительную оценку эффективности препаратов с заграничными аналогами. Торф и чернозем «Ленойл» очищал лучше заграничных биопрепаратов. Хорошие результаты достигнуты при большой концентрации загрязнений и последующей утилизацией.

В обоих препаратах введены особые добавки для активации деструкции нефти. Микроорганизмы не являются токсичными и патогенными, легко приспосабливаются в соленой среде, разлагают растворенные и нерастворенные компоненты нефти. Время нейтрализации незначительное, а сами микроорганизмы не вымываются дождями и во время паводков.

В РФ «Ленойл» и «Деворойл» разрешены Госсанэпиднадзором и Министерством природа.

Использование «Деворойл» и «Ленойл»

Препараты легко использовать. Перед непосредственным нанесением на почву или водную поверхность разводят суспензию. Температура поверхностей должна быть более 5 градусов. Раствор вливают или распыляют над местом загрязнения.

В результате очистки воды от нефти образуется легкоразлагаемый белок и нетоксичные продукты, которые не следует утилизировать. Аборигенная микрофлора без трудностей усвоит отработанные бактерии и продукты их жизнедеятельности. Начнет образовываться гумус или донный ил. Результат очистки может доходить до 99%.

Требуемое количество препаратов будет завесить от вида поверхности и концентрации загрязнения. Время очистки – 1 месяц.

Ленойл и Деворойл – экологически безопасные препараты, так как при их использовании образуются нейтральные продукты, не наносящие вред окружающей природе. Сегодня они взяты на вооружения во многих регионах РФ и СНГ для очистки естественных и искусственных водоемов, а так же санации почвы.

Источник

Добыча нефти и газа

Изучаем тонкости нефтегазового дела ВМЕСТЕ!

Способы борьбы с нефтезагрязнением водных объектов

В настоящее время применяют следующие методы ликвидации нефтяных загрязнений водных объектов:

Механические методы удаления нефти

К ним относятся различные методы сбора нефти с водной поверхности, начиная от ручного вычерпывания нефти до машинных комплексов нефтемусоросборщиков.

Первоначально должно быть осуществлено концентрирование и ограждение находящейся на водной поверхности нефти при помощи плавающих бонов.

Конструкция бонового заграждения состоит из плавучей, экранирующей и балластной частей. Плавучая часть может быть выделена в виде отдельных поплавков (1) прямоугольного или круглого сечения.

Экранирующая часть представляет собой гибкую или жесткую пластину (2), присоединенную к плавучей части бона и нагруженную для придания устойчивости балластной цепью, трубой или растяжками (3).

Предлагается устраивать заграждение подводного типа в виде пневматического барьера, принцип работы которого заключается в создании препятствий на поверхности воды при непрерывной подаче воздуха через перфорированную трубу, уложенную на дно водоема под определенныи углом к направлению течения.

В Канаде общество по борьбе с пролитой нефтью и служба охраны окружающей среды предложила испытать дивертор воздушных пузырьков, когда насосы и скорость течения делают невозможным испытание плавучих бонов. Дивертор представляет собой стальную оцинкованную трубу диаметром 6 см, перфорированную, состоит из звеньев. Собирается на берегу и укладывается с помощью лебедки на дно реки под углом 15-30 o к течению Через перфорацию компрессором подается сжатый воздух. За счет расположения дивертора под углом нефть клином направляется к берегу, где она может быть собрана ковшом.

Максимальная длина 134м, якорь не требуется.

Во ВНИИСПТнефти (ИПТЭР) разработан и испытан образец устройства для сбора нефти с поверхности воды при аварийных разливах на подводных переходах магистральных нефтепроводов через судоходные реки. Принцип работы – эффект вихревой воронки. Испытания на р.Белой показали, что производительность нефтесборщика по нефти зависит от толщины пленки плавающей нефти и при толщине 3,5 мм составляет 30 м 3 /ч. Чем больше толщина пленки, тем больше производительность.

Один из запатентованных методов США предлагает использовать транспортер, установленный на плавучей платформе, нижняя часть движущейся ленты которого погружена в воду. При движении ленты через поверхность раздела вода – воздух нефть прилипает к ней и переносится вверх, где снимается с ленты специальным очистителем и переносится в накопитель. Для увеличения захвата нефти лента покрыта специальным волокнистым материалом.

В бывшем СССР предложено устройство следующей конструкции: в конце длинной фермы с емкостями на концах для плавучести, установлен сепаратор. С помощью направляющих эхранов нефть подается к сепаратору, откуда загрязненная вода и нефть поступают в специальные емкости.

Большое число методов и устройств предлагается для удаления нефти с больших акваторий (реки, моря). Зарубежные специалисты, например, французские, запатентовали устройство для обработки верхнего слоя жидкости, представляющей собой плоскодонное судно длиной 70 м, шириной 20 м, высотой 6 м и осадка – 4 м. В носовой части корпуса (на высоте воды) расположены отверстия для забора загрязненной нефтью воды, которая поступает в центральный отсек (внутри судна), где разделяется на нефть и воду.

Производительность такого типа устройств высокая: 150 т/ч, существует и более высокая производительность – до 6000 м 3 /ч.

Физико-химические методы удаления нефти

К ним следует отнести, в первую очередь, применение адсорбирующих материалов: пенополиуретан, угольная пыль, резиновая крошка, древесные опилки, пемза, торф, торфяной мох и т.п.

Губчатый материал из полиуретановой пены хорошо впитывает нефть и продолжает плавать после адсорбции. По расчетным данным 1 м 3 полиуретанового пенопласта может адсорбировать с поверхности воды приблизительно 700 кг нефти.

Адсорбенты органического и неорганического происхождения перед применением могут гранулироваться (порошкообразные) и пропитываться гидрофобизаторами.

Технология применения заключается в распылении их на нефтяную пленку.

Перспективно применение гранулированных адсорбентов и жидкостей, обладающих магнитными свойствами, которые после адсорбции нефти легко удаляются магнитом.

Американская фирма разработала технологию применения для сбора нефти магнитной жидкостью , придающей нефти магнитные свойства и позволяющая убирать ее даже в виде тонких пленок. Но есть проблемы, так как подобные реагенты в основном токсичны. Кроме того, возникают трудности с равномерным рассеиванием гранул на загрязненной водной поверхности, особенно в ветреную погоду.

Для удаления нефти возможно применение минерального сырья – в частности перлитового. При термообработке при 600-1000 o С перлитовое сырье вспучивается. Для гидрофобизации на нем создается тонкая пленка парафинполимерной смеси. Нефтепоглощение: у необработанного перлита 0,52; после обработки – 0,64-0,7 г/г перлита. Попадая на поверхность воды, материал адсорбирует нефть и образует густую плотную массу, удобную для сбора обычными средствами ( в том числе частыми траловыми сетями).

Патент Канады предусматривает сбор разлитой по поверхности воды нефти с помощью диатомовой земли при соотношении объемов земли и нефти от 3:1 до 1:1. Образующийся глинообразный материал опускается на дно водоема. Смесь диатомной земли с сеном, соломой, торфом в сочетании с адсорбированной нефтью плавает на поверхности не меньше недели.

Химические методы удаления разливов нефти

Удаление нефти с помощью химических соединений – детергентов – нашло применение при разливах нефти на море.

К детергентам относятся растворители и ПАВ, способствующие образованию эмульсий. Наибольшее число этих соединений относится к алкилбензолсульфонатам Na, которые отличаются по длине углеводородной цепи, связанной с бензольнымм кольцом. Следует отметить, что токсичность детергентов для морских организмов часто выше, чем самой нефти и поражающее действие нефтяного загрязнения на гидробионты может быть только усилено.

Эстонские авторы предлагают испытать модифицированный термообработкой торф. Им наполняют пористые капроновые боны, что значительно упрощает технологию сбора и удаления нефтепродукта с поверхности воды.

Немцы (ФРГ) для связывания нефти в нефтевоздушные суспензии предлагают испытать высокодисперсную аморфную гидрофобную кремнекислоту – силикагель – сорбент для нефти.

Микробиологическое разложение нефти

Это перспективное направление предотвращения загрязнения водоемов нефтепродуктами. Для некоторых бактерий нефть является питательной средой. Микробиологическая активность в большей степени зависит от температуры: скорость микробиологических процессов удваивается при увеличении температуры на 10 о С. На развитие микроорганизмов большое влияние оказывает содержание высоколетучих алифатических компонентов нефти. Введение в воду незначительных количеств нитратов и фосфатов увеличивает степень разрушения нефти на 70%.ю

Число органических соединений, используемых микроорганизмами в качестве источников углерода очень велико. Можно считать, что для каждого углеводородного соединения, существующие микроорганизмы способны его разложить.

Оценка степени загрязненности почв и методы их очистки разработаны гораздо слабее, чем для воды.

Механическая очистка почв и вод считается трудоемкой, связана со значительными экономическими затратами. По имеющимся, хотя и немногочисленным данным, перспективными могут оказаться микробиологические методы.

Испытания по биологической очистке старых нефтяных амбаров в округе Санта-Барбара (США): объем амбара 1110 м 3 . В течение 6 месяцев бактерии переработали 525 м 3 нефти, а вся – оказалась разрушенной. На переработку 1 м 3 материала в амбаре израсходовано 1,25 долларов.

Кавказским отделом гидрогеологии и водных ресурсов предложено создавать биологические пруды, обладающие повышенной самоочищающей способностью по отношению к нефтепродукту. Биопруд состоит из двух каскадов плотин, построенных в местах сточных вод. Верхний каскад пруда задерживает механические примеси и крупные частицы, а в нижнем каскаде происходит очистка от нефти и солей. Уровень воды в пруду на втором каскаде поддерживается на заданном уровне. Вода задерживается на десятки часов для микробиологического очищения. Иловые отложения (микроорганизмы) и мелководье создают благоприятные условия для роста камыша, осоки, то есть тех растений, которые потребляют неорганические ионы и способствуют развитию нефтеокисляющих бактерий.

Таким образом, существуют много методов и средств для ликвидаций нефтезагрязнения объектов природной среды. Но их выбор в каждом конкретном случае индивидуален в зависимости от природных и климатических условий.

Остановимся на вопросе сбора плавающей нефти с поверхности шламового амбара и нейтрализации ее вредного воздействия на компоненты природной среды.

Согласно выборочным обследованиям – количество плавающей нефти составляет от 50-60 кг до 10-12 т.

Нефть поступает в шламовые амбары 1) с буровыми растворами, в которые специально вводится как противоприхватная добавка; 2) с БСВ – от обмыва штоков буровых насосов, мытья полов в дизельном блоке и т.д.

В ряде случаев такая нефть содержит преимущественно легкие фракции углеводородов (Зап.Сибирь), а в некоторых местах (Узбекнефть, Белоруснефть, Краснодарнефтегаз) она может быть представлена тяжелыми смолистыми фракциями. В Западной Сибири, Татарии, Башкирии и др. практикуют откачку такой плавающей нефти в действующий нефтепромысловый коллектор. Однако откачка нефти с высоким содержанием смолистых и гудроновых фракций не эффективна и большая часть ее остается в амбарах.

Рассмотренные методы удаления нефти с водных поверхностей показали, что наиболее эффективными средствами являются физико-химическая сорбция и микробиологическое разложение. Эти методы наиболее перспективны для борьбы с нефтяными загрязнениями окружающей среды при строительстве скважин.

Перспективным является совмещение в одном материале способности физико-химической сорбции нефти и ее биодеструкции под действием микробиологического фактора компонентов природной среды.

Наиболее доступным и практичным целесообразно считать такой способ удаления нефтезагрязнения, при котором обеспечивается сбор плавающей нефти с помощью нефтесорбента и последующее захоронение такой массы непосредственно в шламовом амбаре или на специальных земельных участках с последующим ее биоразложением почвенными микроорганизмами. Для этого следует создать условия, которые обеспечат активизацию в почвенной среде природных нефтеокисляющих микроорганизмов. В первую очередь это (активизация) достигается путем создания в почве оптимального содержания биогенных элементов: Nи P. Этим и обусловлен поиск биостимуляторов, входящих в состав нефтесорбентов.

Главным требованием к материалам, сорбирующим углеводороды нефти, является наличие высокоразвитой пористой структуры с гидрофобной поверхностью. Таким требованиям в полной мере отвечают новые нефтесорбенты, полученные на основе продуктов пиролиза отходов древесины, в частности технической щепы, шпона, опилок мягких пород древесины.

При пиролизе отходов такой древесины образуется порошок с размерами частиц 0,3-0.7 мм. Называется сорбент «Илокор».

Сорбционная емкость 8-8,8 г/г сорбента.

Удельная поверхность 2840-3660 м 2 /г.

Плотность 0,82-0,87 г/см 3 .

Материал экологически чистый, не оказывает отрицательного влияния на биологические объекты.

Вторая модификация «Эколан».

Технология сбора плавающей нефти с водных поверхностей

Необходимые технические средства:

— для ограждения загрязненных участков акваторий и локализации разливов нефти;

— для сбора плавающей на поверхности воды нефти;

— для удаления, утилизации или уничтожения собранных загрязненных веществ.

Технология применения нефтесорбента ЭКОЛАН для ликвидации нефтяного загрязнения водных поверхностей амбаров.

Сущность: нефтесорбент наносится на слой плавающей нефти.

Технические средства нанесения: могут быть использованы вентиляционные установки.

Сорбент обладает высокой плавучестью, не тонет и при адсорбции нефти, не смачивается водой. Нефть с нефтесорбентом может легко удаляться с водной поверхности механическим путем (может быть черпак или специальный сепаратор).

при распылении сорбента в неблагоприятных условиях часть его выносится за пределы зоны очистки;

сорбент из-за низкой плотности плохо проникает в толщу нефтезагрязения и при большой толщине нефтяного слоя коэффициент использования сорбента резко снижается.

Указанные недостатки можно преодолеть путем подачи сорбента в зону очистки из-под воды, а распыление сорбента можно осуществить напорным водным потоком.

Источник

Оцените статью