Зависимость температуры от глубины океана

Зависимость температуры от глубины океана

Температура морских глубин

Попытки измерения температур глубокого моря уходят в сравнительно далекое прошлое. В середине восемнадцатого столетия употреблялся особый прибор, изобретенный одним ботаником. Проба воды, взятая в специальный сосуд, не смешивалась в нем с водой из вышележащих слоев. Позднее в море стали опускать так называемые максимально-минимальные термометры. Они показывали наивысшую и самую низкую температуры, которые действовали на термометр в течение определенного времени. Первый, кто ими пользовался, был русский адмирал Крузенштерн, руководитель кругосветного плавания, исследовавший на кораблях «Надежда» и «Нева» западное побережье Хоккайдо, восточное побережье Камчатки и Сахалина, Курильские и Алеутские острова. Его именем назван один из проливов Тихого океана.

Максимально-минимальные термометры не были защищены от давления в очень глубоких слоях воды; показания их не были надежными. Действительное улучшение внес опрокидывающийся термометр, появившийся в последней четверти прошлого столетия.

Самая высокая температура морской воды наблюдается обычно у поверхности. До глубины 200 метров температура понижается очень быстро; ниже, до 1000 метров, — медленнее и глубже 1000 метров понижение температуры происходит уже едва заметно. В слое воды, лежащем у дна моря и достигающем мощности в несколько сот метров, температура примерно одинакова.

Так, при измерениях в экваториальной части Атлантического океана у поверхности температура была 28 градусов. В 180 метрах от поверхности она упала до 21 градуса, на 360 метре — до 10, на 1080 — до 4,2, на глубине 1620 метров — до 2,5 и в 2700 метрах от поверхности моря — до 1,6 градуса. Биб во время своих глубоководных погружений вблизи Бермудских островов установил следующие температуры: 244 метра — градусов; 670 метров — 12; 765 метров — 11 и на глубине в 923 метра — 8 градусов. На дне впадины Романш — данные измерений «Метеора» в Атлантическом океане — температура была 1,9-2 градуса. На 4000 метров выше, вблизи поверхности Атлантического порога, температура несколько повысилась, достигнув 2,5-2,7 градуса. На больших глубинах температура падает иногда ниже нуля, то есть на дне океана можно встретить переохлажденную воду; но это не говорит о том, что здесь может образоваться лед. Соленая вода замерзает не при 0 градусов, а при более низкой температуре, в зависимости от насыщенности воды солями. Точку замерзания понижает к тому же огромное давление, царящее в глубинах моря.

Читайте также:  Схема живые организмы океана

Источник

Распределение температуры по вертикали

ГЛАВА 8. ТЕПЛОВОЙ РЕЖИМ ОКЕАНОВ И МОРЕЙ

§ 32. Распределение температуры по вертикали

Температура океанических вод, как правило, с глубиной понижается, но это понижение неодинаково в различных широтах. Существенные изменения температуры происходят только до глубины 1000 м (в разных районах от 200 до 2000 м). В этом слое вертикальные градиенты температуры воды, т. е. изменения: температуры на единицу длины (единицу расстояния между горизонтами), быстро растут, а ниже указанной границы резко снижаются и становятся ничтожно малыми (табл. 13).

Изменения температуры воды и градиентов температуры с глубиной между 50° с. ш. и 50° ю. ш.
Глубина, м t ºС dt°/100 м Глубина, м t °С dt°/100 м
0
200
400
600
800
16,0
15,5
13,7
9,9
5,1
0,25
0,90
1,90
2,40
0,65
1000
2000
3000
4000
5000
3,8
3,1
2,8
2,6
2,5
0,07
0,03
0,02
0,01

Неравномерное распределение температуры, а также и солености в основном создается процессами перемешивания и морскими течениями. В поверхностных слоях, в пределах деятельного слоя моря, переслоенность водных масс связана главным образом с процессами вертикального обмена, а на глубине неоднородность океанологических характеристик связана с общей циркуляцией вод Мирового океана. Неоднородность вод океанов и морей, связанная с процессами вертикального и горизонтального обмена, определяет наличие промежуточных холодных или теплых слоев с пониженными или повышенными температурами. Эти слои могут быть конвективного (за счет перемешивания) и адвективного происхождения. Последние связаны с доставкой (advectos), т. е. горизонтальным вторжением, водных масс, переносимых из вне течениями. Примером может служить наличие теплых атлантических вод во всей центральной части Северного Ледовитого океана, которые прослеживаются на глубинах от 150-250 до 800-900 м. При переходе от поверхностных вод к промежуточным, глубинным и придонным (см. стр. 165) на границах. их соприкосновения возникают вертикальные градиенты, океанологических характеристик. Переходный слой, в котором велики градиенты температуры, солености, плотности и других свойств, называют слоем скачка. Эти слои могут быть временными, сезонными и постоянными в деятельном слое и на границе его с водами глубин. Глубоководные наблюдения в различных районах Мирового океана. (рис. 14) показывают, что в открытых районах кроме полярных областей, температура заметно изменяется от поверхности до глубины 300- 400 м, затем до 1500 м изменения весьма незначительны, а с 1500 м она почти не изменяется. На 400-450 м температура 10-12° С, на 1000 м 4-7° С, на 2000 м 2,5-4° С и с глубины 3000 м она около 1-2° С.

Читайте также:  Северно ледовитый океан географическое положение относительно экватора
Распределение температуры по вертикали в полярных областях океана

В полярных областях распределение температуры по вертикали носит несколько иной характер (рис. 14, кривая для 61° с. ш.). Здесь на поверхности располагается холодный и относительно опресненный слой: в Антарктике вследствие пополнения пресной воды таянием материковых льдов, в Арктике в результате выноса речных вод. Температура этого слоя около 0°С, а в южных широтах даже до -1,8° С. До 200 м температура воды повышается: в южном полушарии до 0,5° С, в северном до 2° С. Глубже температура падает и на горизонте 800 м достигает 0°С. Температура воды океанов у дна в пределах 45° с. ш. — 45° ю. ш. держится между 0 и +2° С, в умеренных широтах снижается до 0º С, в полярных бассейнах становится отрицательной, достигая -1º С и даже -2° С. Нижние, глубинные слои Мирового океана получают некоторое, весьма небольшое количество тепла от внутренней теплоты Земли. Это тепло вызывает повышение температуры воды в застойных участках океанических впадин и желобов на десятые доли градуса.

В открытых частях океанов, особенно на широтах 40—50°, местами 60°, в толще воды выделяются два слоя: теплый поверхностный и мощный холодный, простирающийся до дна. Между ними лежит переходный слой, называемый главным термоклином. Это постоянный слой скачка, расположенный между глубинами 300-500 и 700-1500 м, характеризующийся понижением температуры от 12-17 до 4-5° С. В высоких широтах, где температура вод однородна от поверхности до дна, термоклин расположен на поверхности.

Распределение температуры воды в окраинных, средиземных и межостровных морях

Распределение температуры воды в окраинных, средиземных и межостровных морях зависит от местных физико-географических условий. Большое значение имеет водообмен с соседним морем или океаном, приток пресных вод, интенсивность вертикальной циркуляции и ледовый режим моря (см. стр. 83). Большое влияние на стратификацию (переслоенность) вод в морях оказывают также приливные процессы. В мелководных проливах и заливах в результате перемешивания воды приливными течениями температура, соленость, содержание газов на поверхности и у дна почти не меняются. Так, например, в Горле Белого моря температура воды на поверхности и у дна 6-7° С, зимой — от -1 до -1,8° С.

В целом Мировой океан, имеющий среднюю температуру 3,8° С, представляет собой холодную сферу. Однако, поглощая огромное количество тепла в низких широтах, он постепенно отдает его атмосфере в средних и высоких широтах в холодное время. Межширотный теплообмен и обмен теплом между океаном и материкам и определяют особенности климата и погодных условий на Земле. В тепловом балансе Земли Мировой океан имеет большое регулирующее значение.

Источник: Общая гидрология, Гидрометеоиздат, Ленинград, 1973

Источник

Почему меняется температура воды в мировом океане

Площадь мирового океана занимает 70% Земли, 30% приходится на сушу. В связи с этим, потребляет больше солнечной энергии на прогрев. Однако лучи воздействуют только на водную поверхность. Уровень нагрева толщи жидкости зависит от смешивания слоев.

Причины изменения температуры воды в океане

Тепловой фон колеблется по ряду факторов:

• географическое расположение. На экваториальной широте наблюдается самая высокая температура. Верхние слои нагреваются до +28°. При движении к полярному кругу наблюдается снижение. На полюсах показатели варьируются в районе нуля. Кроме этого изменчива соленость поверхностных вод. Температура пресной жидкости на несколько градусов ниже;
• глубина. Чем дальше от поверхности, тем холоднее. Изначально показатели «скачут», поэтому температура воды в океане изменяется неравномерно. С набором глубины охлаждение проходит плавнее. Каждые 1000 м понижается на 2°;
• наличие подводных течений. Теплые и холодные источники влияют на скорость «смешивания» подводных слоев.

Глубинные воды имеют полярное происхождение, поэтому структура и состав однородны. На глубине свыше 4000 метров t колеблется в пределах 0°-+2°С.

Факторы, влияющие на неоднородность прогрева

Разбирая вопрос, почему в мировом океане меняется температура воды, необходимо учитывать шарообразную форму планеты. От положения солнца относительно экватора меняется угол наклона. Следовательно, чем дальше от широты, тем больше рассеиваются солнечные лучи. Это снижает эффективность прогрева. Таким образом:

• наиболее высокие значения встречаются в экваториальной зоне. По мере удаления от широты наблюдается понижение;
• наличие ледников. Дрейфующие льдины остужают поверхность вокруг себя. Полное промерзание глубинных вод исключено за счет мантии, которая подогревает нижние слои;
• климат. На территории рядом с пустынями отмечены максимальные значения.

Показатели умеренных широт изменяются от времени суток. Проводя анализ, как и почему меняется температура воды в океане, исследователи учитывают все факторы.

Мировой океан – своеобразный тепловой котел, поглощающий на 50% больше солнечного тепла, чем суша. Вода, нагретая в жаркий сезон, аккумулирует энергию. Высвобождает в атмосферу в период холодов. Такая циркуляция исключает промерзание земли. Учеными подсчитано – если океаническая жидкость не могла сохранять тепло, среднее значение держится на отметке — 21°.Это ниже текущей на 36°.

Источник

Изменение температуры воды в океане в зависимости от глубины

Температура воды с увеличением глубины понижается. Но процесс этот в разных широтах происходит неодинаково, так как глубина проникновения солнечной радиации в разных зонах неодинакова.

На большей части акватории Мирового океана, между 50° с. ш. и 45° ю. ш. в вертикальном распределении температур много общего. В верхних слоях океана до глубины 500 м понижение температуры идет очень быстро, дальше до 1500 м — значительно медленнее, глубже — температура почти не изменяется. На глубинах 3-4 тыс. м в экваториальных и умеренных широтах вода имеет температуру 2-3 °С, в высоких — около 0 °С. Глубже 4 тыс. м температура воды немного повышается вследствие повышения давления (адиабатическое нагревание).

В приполярных районах температура воды понижается до глубины 50-100 м. Ниже она растет за счет приноса более теплых и соленых вод из умеренных и субтропических широт, достигая максимума в слое 200-500 м. Под этим слоем температура снова понижается, и на глубине 800 м она равна 0 °С. Средняя температура Мирового океана в целом 3,8 °С.

В высоких и средних широтах летом под нагретым поверхностным слоем располагается слой резкого скачка температуры — сезонный термоклин. Глубина залегания слоя скачка и величина градиента температуры в нем зависят от интенсивности прогрева поверхностного слоя и перемешивания. В умеренных широтах он обычно располагается на глубинах от 10-16 до 50 м и ниже при значениях вертикального градиента температуры от долей градуса до нескольких градусов на метр.

От экватора до 50-60° с. и ю. ш. слой скачка на глубинах от 300 до 1 тыс. м существует постоянно (главный термоклин). Так как слой температурного скачка — слой изменения плотности, в нем всегда скапливаются живые организмы. Резко выраженный слой скачка плотности препятствует опусканию взвешенных в воде предметов. Например, подводная лодка может лежать на слое скачка как на грунте, откуда и произошел термин «жидкий грунт».

Если рассматривать температурный режим не только открытых частей океанов, но и морей, то и здесь ярко проявляется зависимость температуры от широты, хотя влияние суши, водообмен с океаном и другие причины вносят коррективы в эту связь. Самая высокая температура отмечена на поверхности внутриматериковых тропических морей (в Красном море до 32 °С). Самая низкая температура в полярных морях не опускается ниже -2 °С.

Вертикальное распределение температуры воды в морях зависит, в первую очередь, от водообмена с соседними частями океана. В морях, отделенных от океана порогом, распределение температур зависит от глубины порога, солености моря, температуры на его поверхности. Так, в Средиземном море температура воды у дна (4400 м) составляет 13 °С. Окраинные моря, свободно сообщающиеся с океаном, по характеру распределения температур не отличаются от открытых частей океана.

Источник

Изменение температуры воды в океане в зависимости от глубины

16. Температура воды с увеличением глубины понижается. Но процесс этот в разных широтах происходит неодинаково, так как глубина проникновения солнечной радиации в разных зонах неодинакова. Кроме того, на перераспределение тепла в толще океанической воды оказывают влияние адвективные факторы.

17. На большей части акватории Мирового океана, между 50° С с. ш. и 45° С ю. ш. в вертикальном распределении температур много общего. В верхних слоях океана до глубины 500 м понижение температуры идет очень быстро, дальше до 1500 м — значительно медленнее, глубже — температура почти не изменяется. На глубинах 3000—4000 м в экваториальных и умеренных широтах вода имеет температуру +2° С, +3° С, в высоких — около 0 = С. Глубже 4000 м температура воды немного повышается вследствие повышения давления (адиабатическое нагревание).

18. В приполярных районах температура воды понижается до глубины 50—100 м. Ниже она растет за счет приноса более теплых и соленых вод из умеренных и субтропических широт, достигая максимума в слое 200—500 м. Под этим слоем температура снова понижается, и на глубине 800 м она равна 0° С. Средняя температура Мирового океана в целом +3,8° С.

19. В высоких и средних широтах летом под нагретым поверхностным слоем располагается слой резкого скачка температуры — сезонный термоклин. Глубина залегания слоя скачка и величина градиента температуры в нем зависят от интенсивности прогрева поверхностного слоя и перемешивания. В умеренных широтах он обычно располагается на глубинах от 10—16 до 50 м и ниже при значениях вертикального градиента температуры от долей градуса до нескольких градусов на метр.

20. От экватора до 50—60° С с. и ю. ш. слой скачка на глубинах от 300 до 1000 м существует постоянно (главный термоклин). Так как слой температурного скачка — слой изменения плотности, в нем всегда скапливаются живые организмы. Резко выраженный слой скачка плотности препятствует опусканию взвешенных в воде предметов. Например, подводная лодка может лежать на слое скачка как на грунте, откуда и произошел термин “жидкий грунт”.

21. Если рассматривать температурный режим не только открытых частей океанов, но и морей, то и здесь ярко проявляется зависимость температуры от широты, хотя влияние суши, водообмен с океаном и другие причины вносят коррективы в эту связь. Самая высокая температура отмечена на поверхности внутриматериковых тропических морей (в Красном море до +32° .С). Самая низкая температура в полярных морях не опускается ниже —2° С.

22. Вертикальное распределение температуры воды в морях зависит, в первую очередь, от водообмена с соседними частями океана. В морях, отделенных от океана порогом, распределение температур зависит от глубины порога, солености моря, температуры на его поверхности. Так, в Средиземном море температура воды у дна (4400 м) +13° С. Окраинные моря, свободно сообщающиеся с океаном, по характеру распределения температур не отличаются от открытых частей океана.

23.

Температура воздуха с высотой, как правило, понижается. Это происходит потому, что воздух нагревается в тропосфере от поверхности Земли. В среднем на каждые 100 метров поднятия температура воздуха понижается на 0,6°, или на 6° на 1 километр. Это изменение температуры называется вертикальным градиентом температуры. В умеренных широтах вертикальный градиент температуры изменяется в зависимости от времени года, суток, характера атмосферных процессов и других факторов. При сильном нагреве приземного слоя воздуха величина вертикального градиента температуры превышает даже 1° С. При сильном охлаждении поверхности Земли и прилегающего слоя воздуха вместо понижения наблюдается повышение температуры с высотой, то есть возникает инверсия температуры. Мощные инверсии наблюдаются зимой в Сибири, особенно в Якутии, где преобладает ясная и тихая погода, способствующая охлаждению приземного слоя воздуха. Здесь инверсии температуры очень часто распространяются до высоты 1—2 километров, а разность между температурой воздуха у поверхности Земли и на верхней границе инверсии нередко составляет 20—25°.

Инверсии характерны и для центральных районов Антарктиды. Зимой они бывают в Европе, особенно в восточной ее части, в Канаде и других районах.

Изменение температуры воздуха с высотой происходит не только в связи с отдачей тепла подстилающей поверхностью, но и за счет внутренней энергии, благодаря изменению давления воздуха. Эта энергия затрачивается на преодоление сопротивления окружающей среды при подъеме или опускании воздуха.

Поднимающийся воздух, попадая в разреженную среду, расширяется, происходит его охлаждение, а опускающийся, наоборот, благодаря сжатию . Такое изменение температуры за счет внутренней энергии, без притока и отдачи тепла, называется адиабатическим. В сухом ненасыщенном водяными парами воздухе температура уменьшается на 1 градус на каждые 100 метров при подъеме. Это сухоадиабатический градиент. Во влажном воздухе градиент равен 0,5 градусов на 100 метров, так как теплота, выделенная при конденсации, компенсирует потери. Опускающийся воздух нагревается, опускаясь он попадает в более плотные слои атмосферы, при сжатии энергия выделяется. Нагрев идет на 1 градус на 100 метров. В теплое время года вертикальный градиент температуры в среднем равен 0,6—0,7° С на каждые 100 метров поднятия. Зная температуру у поверхности Земли, можно вычислить приближенные значения температуры на различных высотах . Если, например, у поверхности Земли температура воздуха равна +28° С, то, приняв, что вертикальный градиент температуры в среднем равен 0,7° С на каждые 100 метров, или 7° С на каждый километр, получим, что на высоте четырех километров температура равна 0° С. Температурный градиент зимой в средних широтах над сушей редко превышает 0,4—0,5° С на каждые 100 метров. Нередки случаи, когда в отдельных слоях воздуха температура с высотой почти не изменяется, то есть имеет место изотермия. По величине вертикального градиента температуры воздуха можно судить о характере равновесия атмосферы (устойчивое или неустойчивое). Для определения состояния устойчивости атмосферы используется специальная диаграмма.

при адиабатическом подъеме сухого или ненасыщенного воздуха температура на каждые 100 м подъема падает почти точно на один градус, а при адиабатическом опускании на 100 м температура растет на ту же величину. Эта величина 1°/100 мназывается сухоадиабатическим градиентом .Еще раз напомним, что речь идет об изменении температуры с высотой в вертикально движущейсяиндивидуальной частице воздуха . Не следует смешивать термин «градиент» в этом значении с вертикальным градиентом температуры в атмосферном столбе, о котором пойдет речь ниже.

С адиабатическим подъемом влажного ненасыщенного воздуха связано такое важное изменение, как приближение его к состоянию насыщения. Температура воздуха при его подъеме понижается; поэтому на какой-то высоте достигается насыщение. Эта высота называется уровнем конденсации.

При дальнейшем подъеме влажный насыщенный воздух охлаждается иначе, чем ненасыщенный. В нем происходит конденсация, а при конденсации выделяется в значительных количествах скрытая теплота парообразования или теплота конденсации(около 600 кална каждый грамм сконденсировавшейся воды). Выделение этой теплоты замедляет понижение температуры воздуха при подъеме. Поэтому в поднимающемся насыщенном воздухе температура падает уже не по уравнению Пуассона, а повлажноадиабатическому закону. Она падает тем медленнее, чем больше влагосодержание воздуха в состоянии насыщения (что, в свою очередь, зависит от температуры и давления). На каждые 100 м подъема насыщенный воздух при давлении 1000 мби температуре 0° охлаждается на 0,66°, при температуре +20° — на 0,44° и при температуре — 20° — на 0,88°. При более низком давлении падение температуры соответственно меньше. Падение температуры в насыщенном воздухе при подъеме его на единицу высоты (100 м) называют влажноадиабатическим градиентом Г5.

При очень низких температурах, которые получает воздух при подъеме в высокие слои атмосферы, водяного пара в нем остается немного и выделение теплоты конденсации поэтому также мало. Падение температуры при подъеме в таком воздухе приближается к падению в сухом воздухе . Иначе говоря, влажноадиабатический градиент при низких температурах приближается по величине к сухоадиабатическому.

При опускании насыщенного воздуха процесс может происходить по-разному в зависимости от того, содержит ли воздух жидкие продукты конденсации (капельки и кристаллы) или они уже целиком выпали из воздуха в виде осадков.

Если в воздухе нет продуктов конденсации, то воздух , как только температура в нем начнет при опускании расти, сразу станет ненасыщенным. Поэтому воздух , опускаясь, будет нагреваться по сухоадиабатическому закону, т.е. на 1°/100 м. Если же в воздухе есть капельки и кристаллы, то они при опускании и нагревании воздуха будут постепенно испаряться. При этом часть тепла воздушной массы перейдет в скрытую теплоту парообразования, и потому повышение температуры при опускании замедлится. В результате воздух останется насыщенным до тех пор, пока все продукты конденсации не перейдут в газообразное состояние. А температура в нем будет в это время повышаться по влажноадиабатическому закону: не на 1°/100 м,а на меньшую величину — именно на такую, на какую понизилась бы температура в восходящем насыщенном воздухе при тех же значениях температуры и давления.

Построим график для изменения температуры при адиабатическом процессе в вертикально движущемся воздухе , откладывая по оси абсцисс температуру, а по оси ординат – высоту (или давление). Кривая, графически представляющая это изменение температуры, называется адиабатой.

Выше мы нашли, что при сухоадиабатическом процессе изменение температуры на единицу изменения высоты есть величина постоянная, равная почти точно 1°/100 м.Поэтому если температура и высота отложены по осям в линейной шкале, то сухие адиабаты должны представляться прямыми линиями. Но изменение температуры привлажноадиабатическом процессе есть величина переменная. Поэтому кривые, представляющие влажноадиабатическое изменение в осях координат температура -высота, влажные адиабаты, являются именно кривыми, а не прямыми линиями. Они наклонены к оси абсцисс меньше, чем сухие адиабаты. Но в высоких слоях, где влажноадиабатический градиент приближается по величине к сухоадиабатическому, наклон влажных адиабат приближается к наклону сухих адиабат, поэтому на графике влажные адиабаты будут иметь выпуклость вверх.

Аналогичным образом можно построить адиабаты в осях координат температура — давление, поскольку температура при адиабатических процессах меняется в зависимости от изменения давления.

Адиабатной диаграммойназывают график, на который нанесены семейства сухих и влажных адиабат для различных значений температуры и высоты (или давления).

Источник

Оцените статью